Macromolecular Research

, Volume 17, Issue 3, pp 163–167

In situ microfluidic synthesis of monodisperse PEG microspheres

  • Chang-Hyung Choi
  • Jae-Hoon Jung
  • Taek-Sung Hwang
  • Chang-Soo Lee
Article

Abstract

This study presents a microfluidic method for the production of monodisperse poly(ethylene glycol) (PEG) microspheres using continuous droplet formation and in situ photopolymerization in microfluidic devices. We investigated the flow patterns for the stable formation of droplets using capillary number and the flow rate of the hexadecane phase. Under the stable region, the resulting microspheres showed narrow size distribution having a coefficient of variation (CV) of below 1.8%. The size of microspheres (45∼95 ώm) could be easily controlled by changing the interfacial tension between the two immiscible phases and the flow rates of the dispersed or continuous phase.

Keywords

microfluidics droplets microspheres monodispersity PEG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    H. Jung, K. Lee, S. E. Shim, S. Yang, J. M. Lee, H. Lee, and S. Choe,Macromol. Res.,12, 512 (2004).Google Scholar
  2. (2).
    I. W. Cheong, J. S. Shin, J. H. Kim, and S. J. Lee,Macromol. Res.,12, 225 (2004).CrossRefGoogle Scholar
  3. (3).
    D. Dendukuri, T. A. Hatton, and P. S. Doyle,Langmuir,23, 4669 (2007).CrossRefGoogle Scholar
  4. (4).
    E. J. Tull, P. N. Bartlett, and K. R. Ryan,Langmuir,23, 7859 (2007).CrossRefGoogle Scholar
  5. (5).
    C. H. Choi, J. H. Jung, Y. W. Rhee, D. P. Kim, S. E. Shim, and C. S. Lee,Biomed. Microdevices,9, 855 (2007).CrossRefGoogle Scholar
  6. (6).
    J. W. Lee, J. U. Ha, S. Choe, C. S. Lee, and S. E. Shim,J. Colloid Interf. Sci.,298, 663 (2006).CrossRefGoogle Scholar
  7. (7).
    J. S. Song, F. Tronc, and M. A. Winnik,J. Am. Chem. Soc.,126, 6562 (2004).CrossRefGoogle Scholar
  8. (8).
    Z. F. Liu, H. N. Xiao, and N. Wiseman,J. Appl. Polym. Sci.,76, 1129 (2000).CrossRefGoogle Scholar
  9. (9).
    W. H. Ming, J. Zhao, X. L. Lu, C. C. Wang, and S. K. Fu,Macromolecules,29, 7678 (1996).CrossRefGoogle Scholar
  10. (10).
    C. Charcosset and H. Fessi,Rev. Chem. Eng.,21, 1 (2005).CrossRefGoogle Scholar
  11. (11).
    N. C. Christov, K. D. Danov, D. K. Danova, and P. A. Kralchevsky,Langmuir,24, 1397 (2008).CrossRefGoogle Scholar
  12. (12).
    L. Capretto, S. Mazzitelli, C. Balestra, A. Tosi, and C. Nastruzzi,Lab Chip,8, 617 (2008).CrossRefGoogle Scholar
  13. (13).
    D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton, and P. S. Doyle,Lab Chip,7, 818 (2007).CrossRefGoogle Scholar
  14. (14).
    B. G. De Geest, J. P. Urbanski, T. Thorsen, J. Demeester, and S. C. De Smedt,Langmuir,21, 10275 (2005).CrossRefGoogle Scholar
  15. (15).
    M. Schindler and A. Ajdari,Phys. Rev. Lett.,100, 044501 (2008).CrossRefGoogle Scholar
  16. (16).
    W. H. Tan and S. Takeuchi,Adv. Mater.,19, 2696 (2007).CrossRefGoogle Scholar
  17. (17).
    Z. H. Nie, S. Q. Xu, M. Seo, P. C. Lewis, and E. Kumacheva,J. Am. Chem. Soc.,127, 8058 (2005).CrossRefGoogle Scholar
  18. (18).
    S. Xu, Z. Nie, M. Seo, P. Lewis, E. Kumacheva, H. A. Stone, P. Garstecki, D. B. Weibel, I. Gitlin, and G. M. Whitesides,Angew. Chem. Int. Edit.,44, 724 (2005).CrossRefGoogle Scholar
  19. (19).
    C. J. Cheng, L. Y. Chu, P. W. Ren, H. Zhang, and L. Hu,J. Colloid Interf. Sci.,313, 383 (2007).CrossRefGoogle Scholar
  20. (20).
    M. B. Mellott, K. Searcy, and M. V. Pishko,Biomaterials,22, 929 (2001).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2009

Authors and Affiliations

  • Chang-Hyung Choi
    • 1
  • Jae-Hoon Jung
    • 1
  • Taek-Sung Hwang
    • 1
  • Chang-Soo Lee
    • 1
  1. 1.Department of Chemical EngineeringChungnam National UniversityDaejeonKorea

Personalised recommendations