Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fabrication of PHBV/keratin composite nanofibrous mats for biomedical applications

  • 417 Accesses

  • 44 Citations


Keratin is an important protein used in wound healing and tissue recovery. In this study, keratin was modified chemically with iodoacetic acid (IAA) to enhance its solubility in organic solvent. Poly(hydroxybutylate-co-hydroxyvalerate) (PHBV) and modified keratin were dissolved in hexafluoroisopropanol (HFIP) and electrospun to produce nanofibrous mats. The resulting mats were surface-characterized by ATR-FTIR, field-emission scanning electron microscopy (FE-SEM) and electron spectroscopy for chemical analysis (ESCA). The purem-keratin mat was cross-linked with glutaraldehyde vapor to make it insoluble in water. The biodegradation testin vitro showed that the mats could be biodegraded by PHB depolymerase and trypsin aqueous solution. The results of the cell adhesion experiment showed that the NIH 3T3 cells adhered more to the PHBV/m-keratin nanofibrous mats than the PHBV film. The BrdU assay showed that the keratin and PHBV/m-keratin nanofibrous mats could accelerate the proliferation of fibroblast cells compared to the PHBV nanofibrous mats.

This is a preview of subscription content, log in to check access.


  1. (1)

    E. A. MacGregor and C. T. Greenwood,Polymers in Nature, John Wiley & Sons Press, New York, 1980.

  2. (2)

    M. E. Van Dyke, S. F. Timmons, C. R. Blanchard, A. J. Siller-Jackson, and R. A. Smith,US Patent 528, 893 (2000).

  3. (3)

    S. F. Timmons, C. R. Blanchard, and R. A. Smith,US Patent 611, 0487 (2000).

  4. (4)

    M. E. Van Dyke and A. J. Siller-Jackson,Polym. Mater. Sci. Eng.,87, 453 (2002).

  5. (5)

    K. Yamauchi, M. Maniwa, and T. Mori,J. Biomater. Sci. Polym. Ed.,9, 259 (1998).

  6. (6)

    K. Yamauchi and A. Khoda,Colloid Surface B,9, 117 (1997).

  7. (7)

    C. B. Jones and D. K. Mecham,Arch. Biochem.,3, 193 (1943).

  8. (8)

    A. Kuzuhara and T. Hori,Polymer,44, 7962 (2003).

  9. (9)

    K. Yamauchi, A. Yamauchi, T. Kusunoki, A. Kohda, and Y. Konishi,J. Biomed. Mater. Res.,31, 439 (1996).

  10. (10)

    A. Tachibana, S. Kaneko, T. Tanabe, and K. Yamauchi,Biomaterials,26, 297 (2005).

  11. (11)

    M. M. Schrooyen Peter, P. J. Dijkstra, R. C. Oberthuer, A. Bantjes, and J. Feijen,J. Agric. Food Chem.,48, 4326 (2000).

  12. (12)

    M. M. Schrooyen Peter, P. J. Dijkstra, R. C. Oberthuer, A. Bantjes, and J. Feijen,J. Agric. Food Chem.,49, 221 (2001).

  13. (13)

    L. Huang, R. A. McMillan, R. P. Apkarian, B. Pourdeyhimi, V. P. Conticello, and E. L. Chaikof,Macromolecules,33, 2989 (2000).

  14. (14)

    C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin,Polymer,40, 7397 (1999).

  15. (15)

    C. J. Buchko, K. M. Kozloff, and D. C.Martin,Biomaterials,22, 1289 (2001).

  16. (16)

    G. E. Wnek, M. E. Carr, D. G. Simpson, and G. L. Bowlin,Nano Lett.,3, 213 (2003).

  17. (17)

    C. S. Ki, D. H. Baek, K. D. Gang, K. H. Lee, I. C. Um, and Y. H. Park,Polymer,46, 5094 (2005).

  18. (18)

    Y. Z. Zhang, H. W. Ouyang, C. T. Lim, S. Ramakrishna, and Z. M. Huang,J. Biomed. Mater. Res. (Appl Biomater),72, 156 (2005).

  19. (19)

    N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, and M. Q. Zhang,Biomaterials,26, 6176 (2005).

  20. (20)

    X. Y. Geng, O. H. Kwon, and J. Jang,Biomaterials,26, 5427 (2005).

  21. (21)

    J. A. Matthews, D. G. Simpson, G. E. Wnek, and G. L. Bowlin,Biomacromolecules,3, 232 (2002).

  22. (22)

    L. Huang, K. Nagapudi, R. P. Apkarian, and L. Chaikof,J. Biomater. Sci. Polym. Ed.,12, 979 (2001).

  23. (23)

    L. Huang, R. P. Apkarian, and E. L. Chaikof,Scanning,23, 372 (2001).

  24. (24)

    G. L. Ellman,Arch. Biochem. Biophys.,74, 443 (1958).

  25. (25)

    B. S. Harrap and E. F. Woods,Biochem. J.,92, 8 (1964).

  26. (26)

    B. S. Harrap and E. F. Woods,Biochem. J.,92, 19 (1964).

  27. (27)

    K. S. Rho, L. Jeong, G. Lee, B. M. Seo, Y. J. Park, S. D. Hong, S. Roh, J. J. Cho, W. H. Park, and B. M. Min,Biomaterials,27, 1452 (2006).

  28. (28)

    G. A. R. Nobes, R. H. Marchessault, H. Chanzy, B. H. Briese, and D. Jendrossek,Macromolecules,29, 8330 (1996).

  29. (29)

    H. P. Kasserra and K. J. Laidler,Can. J. Chem.,47, 4031 (1969).

  30. (30)

    K. Maghni, O. M. Nicolescu, and J. G. Martin,J. Immunol. Methods,223, 185 (1999).

  31. (31)

    Y. L. Cui, A. D. Qi, W. G. Liu, X. H. Wang, H. Wang, D. M. Ma, and K. D. Yao,Biomaterials,24, 3859 (2003).

  32. (32)

    D. P. Speer, M. Chvapil, C. D. Eskelson, and J. Ulreich,J. Biomed. Mater. Res.,14, 753 (1980).

  33. (33)

    F. Gassner and A. J. Owen,Polymer,35, 2233 (1994).

  34. (34)

    J. L. Cleland, M. F. Powell, and S. J. Shire,Crit RevTherapeutic Drug Carrier Systems,10, 307 (1993).

  35. (35)

    I. S. Lee, O. H. Kwon, W. Meng, I. K. Kang, and Y. Ito,Macromol. Res.,12, 374 (2004).

  36. (36)

    I. K. Kang, S. H. Choi, D. S. Shin, and S. C. Yoon,Int. J. Biol. Macromol.,28, 205 (2001).

Download references

Author information

Correspondence to Inn-Kyu Kang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yuan, J., Xing, Z., Park, S. et al. Fabrication of PHBV/keratin composite nanofibrous mats for biomedical applications. Macromol. Res. 17, 850–855 (2009). https://doi.org/10.1007/BF03218625

Download citation


  • biomedical
  • fibrobalsts
  • keratin
  • nanofiber
  • PHBV