Macromolecular Research

, Volume 16, Issue 5, pp 424–428 | Cite as

In situ crosslinked ionic gel polymer electrolytes for dye sensitized solar cells

  • Hyo Jin Shim
  • Dong Wook Kim
  • Changjin Lee
  • Yongku KangEmail author
  • Dong Hack Suh


We prepared an ionic gel polymer electrolyte for dye-sensitized solar cells (DSSCs) without leakage problem. Triiodide compound (BTDI) was synthesized by the reaction of benzene tricarbonyl trichloride with diethylene glycol monotosylate and subsequent substitution of tosylate by iodide using NaI. Bisimidazole was prepared by the reaction of imidazole with the triethylene glycol ditosylate under strongly basic condition provided by NaH. BTDI and bisimidazole dissolved in an ionic liquid were injected into the cells and permeated into the TiO2 nanopores. In situ crosslinking was then carried out by heating to form a network structure of poly(imidazolium iodide), thereby converting the ionic liquid electrolytes to a gel or a quasi-solid state. A monomer (BTDI and bisimidazole) concentration in the electrolytes of as low as 30 wt% was sufficient to form a stable gel type electrolyte. The DSSCs based on the gel polymer electrolytes showed a power conversion efficiency of as high as 1.15% with a short circuit current density of 5.69 mAcm−2, an open circuit voltage of 0.525 V, and a fill factor of 0.43.


dye sensitized solar cells ionic gel polymer electrolytes in situ crosslinking quasi-solid state 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    B. O. Regan and M. Grätzel,Nature,353, 737 (1991).CrossRefGoogle Scholar
  2. (2).
    A. Hagfeldt and M. Grätzel,Chem. Rev.,9, 49 (1995).CrossRefGoogle Scholar
  3. (3) (a).
    A. Hagfeldt and M. Grätzel,Acc. Chem. Res.,33, 269 (2000). (b) M.Grätzel,Nature,414, 338 (2001).CrossRefGoogle Scholar
  4. (4).
    M. Y. Song, K.-J. Kim, and D. Y. Kim,Macromol. Res.,14, 630 (2006).CrossRefGoogle Scholar
  5. (5).
    W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, and S. Yanagida,Chem. Commun.,4, 374 (2002).CrossRefGoogle Scholar
  6. (6).
    P. Wang, S. M. Zakeeruddin, I. Exnar, and M. Grätzel,Chem. Commun.,24, 2972 (2002).CrossRefGoogle Scholar
  7. (7).
    S. Mikoshiba, S. Murai, H. Sumino, and S. Hayase,Chem. Lett.,4, 918 (2002).CrossRefGoogle Scholar
  8. (8).
    K. Suzuki, M. Yamaguchi, S. Hotta, N. Tanabe, and S. Yanagida,J. Photochem. Photobio. A: Chem.,164, 81 (2004).CrossRefGoogle Scholar
  9. (9).
    A. Noda and M. Watanabe,Electrochim. Acta,45, 1265 (2000).CrossRefGoogle Scholar
  10. (10).
    Y. Kang, H. J. Kim, K. H. Chng, and M. H. Lee,J. Power Sources,92, 25 (2001).CrossRefGoogle Scholar
  11. (11).
    H. J. Kim, E. Kim, and S. B. Rhee,Korea Polym. J.,4, 83 (1996).Google Scholar
  12. (12).
    Y. Kang, H. J. Kim, E. Kim, B. Oh, and J. H. Cho,Proc. Electrochem. Soc.,2599, 534 (1999).Google Scholar
  13. (13).
    Z. Fei, W. H. Ang, D. Zhao, R. Scopelliti, E. E. Zvereva, S. A. Katsyuba, and P. J. Dyson,J. Phys. Chem. B,111, 10095 (2007).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2008

Authors and Affiliations

  • Hyo Jin Shim
    • 1
    • 2
  • Dong Wook Kim
    • 1
    • 2
  • Changjin Lee
    • 1
    • 2
  • Yongku Kang
    • 1
    • 2
    Email author
  • Dong Hack Suh
    • 1
  1. 1.Department of Chemical EngineeringHanyang UniversitySeoulKorea
  2. 2.Advanced Materials DivisionKorea Research Institute of Chemical TechnologyDaejeonKorea

Personalised recommendations