Advertisement

Macromolecular Research

, Volume 13, Issue 5, pp 435–440 | Cite as

Direct patterning of self assembled nano-structures of block copolymers via electron beam lithography

  • Bo Kyung Yoon
  • Wonseok Hwang
  • Youn Jung Park
  • Jiyoung Hwang
  • Cheolmin ParkEmail author
  • Joonyeon Chang
Article

Abstract

This study describes a method where the match of two different length scales, i.e., the patterns from selfassembled block copolymer (<50 nm) and electron beam writing (>50 nm), allow the nanometer scale pattern mask. The method is based on using block copolymers containing a poly(methyl methacrylate) (PMMA) block, which is subject to be decomposed under an electron beam, as a pattern resist for electron beam lithography. Electron beam on self assembled block copolymer thin film selectively etches PMMA microdomains, giving rise to a polymeric nanopattern mask on which subsequent evaporation of chromium produces the arrays of Cr nanoparticles followed by lifting off the mask. Furthermore, electron beam lithography was performed on the micropatterned block copolymer film fabricated by micro-imprinting, leading to a hierarchical self assembled pattern where a broad range of length scales was effectively assembled, ranging from several tens of nanometers, through submicrons, to a few microns.

Keywords

block copolymer electron beam lithography nanopattern mask self assembly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    C. Park, J. S. Yoon, and E. L. Thomas,Polymer,44,7779 (2003).CrossRefGoogle Scholar
  2. (2).
    I. W. HamleyThe Physics of Block Copolymers, Oxford University Press Inc. New York, 1998.Google Scholar
  3. (3).
    H. Tokuhisa and P. T. Hammond,Langmuir,20, 1436 (2004).CrossRefGoogle Scholar
  4. (4).
    A. M. Higgins and R. A. L. Jones,Nature,404, 476 (2000).CrossRefGoogle Scholar
  5. (5).
    D. G. Choi, S. Kim, S. G. Jang, S. M. Yang, J. R. Jeong, and S. C. Shin,Chem. Mater.,16, 4208 (2004).CrossRefGoogle Scholar
  6. (6).
    M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson,Science,276, 1401 (1997).CrossRefGoogle Scholar
  7. (7).
    J. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, and G. J. VancsoAdv. Mater.,15, 1599 (2003).CrossRefGoogle Scholar
  8. (8).
    Y. J. Jung, T. H. La, H. J. Kim, T. H. Kang, K. In, K. J. Kim, B. Kim, and J. W. Park,Langmuir,19, 4512 (2003).CrossRefGoogle Scholar
  9. (9).
    R. Glass, M. Arnold, J. Bl⨧mel, A. Küller, M. Möller, and J. P. Spatz,Adv. Func. Mater.,13, 569 (2003).CrossRefGoogle Scholar
  10. (10).
    M. J. Fasolka and A. M. Mayes,Ann. Rev. Mater. Res.,31, 323 (2001).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2005

Authors and Affiliations

  • Bo Kyung Yoon
    • 1
  • Wonseok Hwang
    • 1
  • Youn Jung Park
    • 1
  • Jiyoung Hwang
    • 1
  • Cheolmin Park
    • 1
    Email author
  • Joonyeon Chang
    • 2
  1. 1.Department of Materials Science and EngineeringYonsei UniversitySeoulKorea
  2. 2.Nano Device Research CenterKorea Institute of Science and TechnologyCheongryangKorea

Personalised recommendations