Macromolecular Research

, Volume 13, Issue 5, pp 403–408 | Cite as

Synthesis and characterization of new blue light emitting alternating terphenylenevinylene carbazylenevinylene copolymer

  • Yun-Hi Kim
  • Jung-Cheol Park
  • Hun-Jin Kang
  • Jong-Won Park
  • Hyung-Sun Kim
  • Jin-Hak Kim
  • Soon-Ki Kwon
Article

Abstract

A new terphenylenevinylene carbazylenevinylene alternating copolymer with the advantage of poly(p-phenylenevinylene) (PPV), poly(p-phenylene)(PPP) and poly(carbazole) was designed, synthesized and characterized. The polymer structure was confirmed by various spectroscopic analyses and the number average molecular weight (Mn) of the obtained polymer was 7,800. The resulting polymer was thermally stable with high glass transition temperature (Tg) (150°C), and was readily soluble in common organic solvents. Cyclic voltammetry study revealed that the HOMO and LUMO energy levels of the polymer were 5.37 and 2.47 eV, respectively. The ITO/ PEDOT/polymer/Al device fabricated from the polymer emitted bright sky blue light with a maximum peak of around 478 nm. The device showed the maximum brightness of 1,200 nW with a turn-on voltage of 7 V.

Keywords

oly(carbazole) ED asy hole injection and transporting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes,Nature,347, 539 (1990).CrossRefGoogle Scholar
  2. (2).
    R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burrough, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santo, J. L. Bredas, M. Logdlund, and W. R. Salaneck,Nature,397, 121 (1990).CrossRefGoogle Scholar
  3. (3).
    A. Kraft, A. C. Grimsdale, and A. B. Holmes,Angew. Chem. Int. Ed.,37, 402 (1998).CrossRefGoogle Scholar
  4. (4).
    Y. H. Kim, H. O. Lee, K. S. Lee, and S. K. Kwon,Macromol. Res.,11, 471 (2003).CrossRefGoogle Scholar
  5. (5).
    Y. H. Kim, H. O. Lee, S. O. Jung, and S. K. Kwon,Macromol. Res.,11, 194 (2003).CrossRefGoogle Scholar
  6. (6).
    G. Grem, G. Leditzky, B. Ullrich, and G. Leising.Adv. Mater.,4, 36 (1992).CrossRefGoogle Scholar
  7. (7).
    C. Grem, V. Martin, F. Meghdadi, C. Par, J. Stamphfl, S. Tasch, and G. Leising.Synth. Met.,71, 2193 (1995).CrossRefGoogle Scholar
  8. (8).
    Y. Yang, Q. Pei, and A. J. Heeger,Synth. Met.,78, 263 (1996).CrossRefGoogle Scholar
  9. (9).
    S. A. Chen and C.I. Chao,Synth. Met.,79, 93 (1996).CrossRefGoogle Scholar
  10. (10).
    A. Edwards, S. Blumstengel, I. Sokolik, H. Yun, Y. Okamoto, and R. Dorsinville,Synth. Met.,84, 639 (1997).CrossRefGoogle Scholar
  11. (11).
    P. B. Balanda, M. B. Ramey, and J. R. Reynolds,Macromolecules,32, 3970 (1999).CrossRefGoogle Scholar
  12. (12).
    W. J. Feast, I. S. Millichamp, R. H. Friend, M. E. Horton, D. Phillips, S. Rughooputh, and G. Rumbles,Synth. Met.,10, 181 (1985).CrossRefGoogle Scholar
  13. (13).
    Y. J. Pu, M. Soma, J. Kido, and H. Nishide,Chem. Mater.,13, 3817 (2001).CrossRefGoogle Scholar
  14. (14).
    J. Ostraskaite, V. Voska, J. Antulis, V. Gaidelis, V. Jankauskas, and J. V. Grazulevicius,J. Mater. Chem.,12, 3469 (2002).CrossRefGoogle Scholar
  15. (15).
    N. X. Hu, S. Xie, Z. Popovic, B. Ong, A. M. Hor, and S. Wang,J. Am. Chem. Soc.,121, 5097 (1999).CrossRefGoogle Scholar
  16. (16).
    K. R. J. Tomas, J. T. Lin, Y.-Y. Lin, C. Tsai, and S.-S. Sun,Organometallics,20, 2262 (2001).CrossRefGoogle Scholar
  17. (17).
    K. R. J. Tomas, J. T. Lin, Y.-T. Tao, and C. W. Ko,J. Am. Chem. Soc.,123, 9404 (2001).CrossRefGoogle Scholar
  18. (18).
    F. Dierschke, A. C. Grimsdale, and K. Mullen,Macromol. Chem. Phys.,205, 1147 (2004).CrossRefGoogle Scholar
  19. (19).
    J. F. Morin and M. Leclerc,Macromolecules,34, 4680 (2001).CrossRefGoogle Scholar
  20. (20).
    J. Ostrauskaite and P. Strohriegl.Makromol. Chem. Phys.,204, 1713 (2003).CrossRefGoogle Scholar
  21. (21).
    F. Dierschke, A. C. Grimsdale, and K. Mullen, Synthesis, 2470 (2003).Google Scholar
  22. (22).
    B. K. An, Y. H. Kim, D. C. Shin, S. Y. Park, H. S. Yu, and S. K. Kwon,Macromolecules,34, 3993 (2001).CrossRefGoogle Scholar
  23. (23).
    Y. H. Kim, D. C. Shin, S. K. Kwon, and J. H. Lee,J. Mater. Chem.,12, 1280 (2002).CrossRefGoogle Scholar
  24. (24).
    Y. H. Kim, J. H. Ahn, D. C. Shin, H. S. Kim, and S. K. Kwon,Optical Materials,21, 175 (2002).CrossRefGoogle Scholar
  25. (25).
    Y. H. Kim, J. H. Ahn, D. C. Shin, J. H. Kim, Y. W. Park, D. S. Choi, Y. K. Kim, and S. K. Kwon,Bull. Korean Chem. Soc.,22, 1181 (2001).Google Scholar
  26. (26).
    Y. H. Kim, J. H. Ahn, D. C. Shin, and S. K. Kwon,Polymer,45, 2525 (2004).CrossRefGoogle Scholar
  27. (27).
    Y. H. Kim, D. C. Shin, H. S. Kim, and S. K. Kwon,Polymer,46, 4647 (2005).CrossRefGoogle Scholar
  28. (28).
    Y. H. Kim, S. K. Kwon, D. S. Yoo, M. F. Rubner, and M. S. Wrighton,Chem. Mater.,9, 2669 (1987).Google Scholar
  29. (29).
    H. Li, Y. Zhang, Y. Hu, D. Ma, L. Wang, X. Jing, and F. Wang,Macromol. Chem. Phys.,205, 247 (2005).CrossRefGoogle Scholar
  30. (30).
    S. Ng, H. Lu, H. S. O. Chan, A. Fujii, T. Laga, and K. Yoshino,Adv. Mater.,12, 1122 (2000).CrossRefGoogle Scholar
  31. (31).
    X. Tao, Y. Zhang, T. Wada, H. Sasabe, H. Suzuki, T. Watanabe, and S. Miyata,Adv. Mater.,10, 226 (1998).CrossRefGoogle Scholar
  32. (32).
    V. Cimrova, D. Neher, M. Remmers, and I. Kimnek,Adv. Mater.,10, 676 (1998).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2005

Authors and Affiliations

  • Yun-Hi Kim
    • 1
  • Jung-Cheol Park
    • 1
  • Hun-Jin Kang
    • 1
  • Jong-Won Park
    • 1
  • Hyung-Sun Kim
    • 1
  • Jin-Hak Kim
    • 1
  • Soon-Ki Kwon
    • 1
  1. 1.Department of Polymer Science & Engineering and Engineering Research InstituteGyeongsang National UniversityJinjuKorea

Personalised recommendations