Macromolecular Research

, Volume 10, Issue 4, pp 221–229 | Cite as

Poly(ethylene terephthalate)(PET) nanocomposites filled with fumed silicas by melt compounding

  • Su-Chul Chung
  • Wan-Gyu Hahm
  • Seung-Soon Im
  • Seong-Geun Oh


PET nanocomposites filled with fumed silicas were prepared via direct melt compounding method at various mixing conditions such as filler type and filler content. Some fumed silicas were pre-treated to improve the wettability and dispersibility, and principal characterizations were performed to investigate the effects of nano fumed silicas on polymer matrix. Hydrophobic fumed silica (M-FS), which has the similar contact angles of water with neat PET, acted as the best reinforcement for the thermal stability and mechanical properties of PET nanocomposite, and FE-SEM images also showed that M-FS was uniformly dispersed into matrix and had good wettability. But, some filler (O-FS) had low dispersibility and caused the deterioration of mechanical properties. Besides, the results of DSC revealed the nucleation effect of all fillers in polymer matrix, and PET nanocomposite filled with hydrophilic fumed silica (FS) showed markedly the characteristic dynamic rheological properties such as shear thinning behavior at very low frequencies and the decrease of viscosity.


poly(ethylene terephthalate) nanocomposite fumed silica melt compounding rheology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    M.B. Ko, M. Park, J. Kim, and C.R. Choe,Kor. Polym. J.,8(2), 95–101 (2000).Google Scholar
  2. (2).
    Technical Bulletin no. 6, no. 11, Degussa Corporation, Aklon, OH, 1989.Google Scholar
  3. (3).
    J. B. Donnet, M. J. Wang, E. Papirer, and A. Vidal,Kautsch, Gummi, Kunstst.,39(6), 510 (1986).Google Scholar
  4. (4).
    H. Barthel, F. Achenbach, and H. Maginot,Proc. Int. Symp. on Mineral and Organic Functional Fillers in Polymers (MOFFIS 93), Universite de Namur, Belgium, 301 (1993).Google Scholar
  5. (5).
    A. J. Hurd, D. W. Schaefer, and J. E. Martin,Phys. Rev. A,35(5), 2361 (1987).CrossRefGoogle Scholar
  6. (6).
    F. W. A. M. Schreuder and H. N. Stein,Rheol. Acta,26, 45 (1987).CrossRefGoogle Scholar
  7. (7).
    G. Lee, S. Murray, and H. Rupprecht,J. Colloid Interf. Sci.,105(1), 257 (1985).CrossRefGoogle Scholar
  8. (8).
    H. Barthel,Colloids and Surfaces A: Physicochemical and Engineering Aspects,101, 217 (1995).CrossRefGoogle Scholar
  9. (9).
    L. E. Nielsen and R. F. Landel,Mechanical Properties of Polymers and Composites, Marcel Dekker, New York, 1994.Google Scholar
  10. (10).
    M. Sumita, T. Shizuma, K. Miyasaka, and K. Ishikawa,J. Macromol Sci. Phys.,B22(4), 601 (1983).Google Scholar
  11. (11).
    E. Reynaud, T. Jouen, C. Gauthier, G. Vigier, and J. Varlet,Polymer,42, 8759 (2001).CrossRefGoogle Scholar
  12. (12).
    Min Zhi Rong, Ming Qiu Zhang, Yong Xiang Zheng, Han Min Zeng, R. Walter, and K. Friendrich,Polymer,42, 167 (2001).CrossRefGoogle Scholar
  13. (13).
    Ana M. Torro-Palau, Juan C. Fernandez-Garcia, A. Cesar Orgiles-Barcelo, and Jose Migual Martin-Martinez,Int. J. of Adhes. and Adhes.,21, 1 (2001).CrossRefGoogle Scholar
  14. (14).
    Antikow Paul and Pinaud Francois, United States Patent No. 5336709 (1994).Google Scholar
  15. (15).
    James J. Breuning, Robert D. Johnson, and Gregory K. Morris, United States Patent No. 531976 (1984).Google Scholar
  16. (16).
    S.Y. Oh, I.N. Kim, J.W. Choi, M.S. Kim, and H.D. Jang,J. Korean Ind Eng. Chem.,11(9), 890 (2000).Google Scholar
  17. (17).
    Heinz-Gunter Lux, Karl Meier, Astrid Muller, Rolf Oelmuller, and Anja Ramb, United States Patent No. 6.191.122 B1 (2001).Google Scholar
  18. (18).
    J.K. Lee, K.H. Lee, and B.S. Jin,Macromol. Res.,10(1), 44 (2002).CrossRefGoogle Scholar
  19. (19).
    T. B. Lewis and L. E. Nielsen,J. Appl. Polym. Sci.,14, 1449 (1970).CrossRefGoogle Scholar
  20. (20).
    L. E. Nielsen,J. Appl. Phys.,41, 4626 (1970).CrossRefGoogle Scholar
  21. (21).
    S. McGee and R. L. McCullough,Polym. Comp.,2, 149 (1981).CrossRefGoogle Scholar
  22. (22).
    T. B. Lewis and L. E. Nielsen,Trans. Soc. Rheol.,12, 421 (1968).CrossRefGoogle Scholar
  23. (23).
    J. G. Brodnyan,Trans. Soc. Rheol.,12, 357 (1968).CrossRefGoogle Scholar
  24. (24).
    H. S. Katz and J. V. Milewski,Handbook of Fillers and Reinforcements for Plastics, Van Nostrand Reinhold, New York, 1978.Google Scholar
  25. (25).
    M. Al-Jarallah and E. Trons,J. Test. Eval.,9, 3 (1981).CrossRefGoogle Scholar
  26. (26).
    R. K. Gupta and S. G. Seshadri,J. Rheol.,30, 503 (1986).CrossRefGoogle Scholar
  27. (27).
    D. Li and A. W. Neumann,J. of Colloid and Interf. Sci.,148, 190 (1992).CrossRefGoogle Scholar
  28. (28).
    C. D. Han, J. Kim, and J. K. Kim,Macromolecules,22, 383 (1989).CrossRefGoogle Scholar
  29. (29).
    J. W. Cho and D. R. Paul,Polymer,42, 1083 (2001).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer 2002

Authors and Affiliations

  • Su-Chul Chung
    • 1
  • Wan-Gyu Hahm
    • 1
  • Seung-Soon Im
    • 1
  • Seong-Geun Oh
    • 2
  1. 1.Department of Textile and Polymer Engineering, College of EngineeringHanyang UniversitySeoulKorea
  2. 2.Department of Chemical Engineering, College of EngineeringHanyang UniversitySeoulKorea

Personalised recommendations