Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Grafting of glycidyl methacrylate upon coralline hydroxyapatite in conjugation with demineralized bone matrix using redox initiating system

  • 94 Accesses

  • 21 Citations

Abstract

Grafting of glycidyl methacrylate (GMA) upon coralline hydroxyapatite in conjugation with demineralized bone matrix (CHA-DBM) using equal molar ratio of potassium persulfate/sodium metabisulfite redox initiating system was investigated in aqueous medium. The optimum reaction condition was standardized by varying the concentrations of backbone, monomer, initiator, temperature and time. The results obtained imply that the percent grafting was found to increase initially and then decrease in most of the cases. The optimum temperature and time were found to be 50 δC and 180 min, respectively, to obtain higher grafting yield. Fourier transform infrared (FT-IR) spectroscopy and X-ray powder diffraction (XRD)method were employed for the proof of grafting. The FT-IR spectrum of grafted CHA-DBM showed epoxy groups at 905 and 853 cm−1 and ester carbonyl group at 1731 cm−1 of poly(glycidyl methacrylate) (PGMA) in addition to the characteristic absorptions of CHA-DBM, which provides evidence of the grafting. The XRD results clearly indicated that the crystallographic structure of the grafted CHA-DBM has not changed due to the grafting reaction. Further, no phase transformation was detected by the XRD analysis, which suggests that the PGMA is grafted only on the surface of CHA-DBM backbone. The grafted CHA-DBM will have better functionality because of their surface modification and hence they may be more useful in coupling of therapeutic agents through epoxy groups apart from being used as osteogenic material.

This is a preview of subscription content, log in to check access.

References

  1. (1)

    K. Ono, T. Yammamura, T. Nakammura, and T. Kokubo,Biomater.,11, 265 (1990).

  2. (2)

    M. Jarcho,Clin. Orthop. Rel. Res.,157, 259 (1981).

  3. (3)

    K. De Groot,Biomater.,1, 47 (1980).

  4. (4)

    C. Muller-Mai, C. Voigt, S. R. De Almeida Reis, H. Herbst, and U. M. Gross,J. Mater. Sci. Mater. Med.,7, 479 (1996).

  5. (5)

    J. Glowaki and J. B. Mulliken,Clin. Plast. Surg.,12, 233 (1985).

  6. (6)

    S. Mizuno and J. Glowacki,Biomater.,17, 1819 (1996).

  7. (7)

    M. R. Urist,Science,150, 893 (1965).

  8. (8)

    T. K. Sampath and A. H. Reddi,Proc. Natl. Acad. Sci. USA,80, 6591 (1983).

  9. (9)

    T. Sato, M. Kavamura, K. Sato, and T. Miura,Clin. Orthop.,263, 254 (1991).

  10. (10)

    S. Kotani, T. Yammamura, T. Nakamura, T. Kitsugi, Y. Furita, K. Kawanable, and T. Kokubo,Clin. Orthop.,278, 226 (1992).

  11. (11)

    A. W. Eckert, D. Grobe, and U. Rothe,Biomater.,21, 441 (2000).

  12. (12)

    R. Murugan and K. Panduranga Rao,J. Appl. Polym. Sci., (2002, under revision).

  13. (13)

    T. Sathian, T. P. Sastry, Y. L. Narayana, and G. R. Krishnan,Proceedings of XXV IULTCS Congress,CTO-4, 576 (1999).

  14. (14)

    K. Panduranga Rao,J. Biomat. Sci. Polym. Ed.,7, 623 (1995).

  15. (15)

    M. Sivakumar, T. S. Sampathkumar, K. L. Shantha, and K. Panduranga Rao,Biomater.,17, 1709 (1996).

  16. (16)

    S. Mizuno and J. Glowaki,Biomater.,17, 1819 (1996).

  17. (17)

    Y. Ikada, Y. Nishizaki, and I. Sakurada,J. Polym. Sci., Polym. Chem. Ed.,12, 1829 (1974).

  18. (18)

    P. H. Von Hippel, Treatise on Collagen, G.N. Ramachandran, Ed., Academic Press, New York, 1967, Vol.1, pp 253.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Murugan, R., Rao, K.P. Grafting of glycidyl methacrylate upon coralline hydroxyapatite in conjugation with demineralized bone matrix using redox initiating system. Macromol. Res. 11, 14–18 (2003). https://doi.org/10.1007/BF03218272

Download citation

Keywords

  • coralline hydroxyapatite
  • DBM
  • GMA
  • grafting
  • FT-IR