Toxicology and Environmental Health Sciences

, Volume 2, Issue 4, pp 231–237 | Cite as

Differential gene expression profiling in B[k]F-exposed marine medaka,Oryzias javanicus by subtractive hybridization

  • Hye-Young Jeon
  • Seonock Woo
  • Hyokyung Won
  • Bora Kim
  • Seungshic Yum
Article

Abstract

Benzo[k]fluoranthene (B[k]F) is one of numerous polycyclic aromatic hydrocarbons (PAHs) which is a persistent environmental contaminant in air and water. Upon B[k]F exposure, differential gene expression profiling was conducted in marine medaka fish (Oryzias javanicus) using subtractive hybridization. As a result, forty two differentially expressed candidate genes were induced in B[k]F-exposed fish as compared to control group, and the genes were associated with general metabolism, signal transduction, cell cycle, immune response, cytoskeleton, development, nucleotide/protein binding and some were non-categorized. These identified gene candidates have great potential to be developed as biomarkers for the identification of effects of B[k]F exposure in the environment. The results obtained in this study will offer insight to the physiological change induced by B[k]F exposure and will help assess the molecular mechanisms of B[k]F toxicity.

Keywords

Oryzias javanicus Marine medaka Benzo[k]fluoranthene Differential gene expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reynaud, S. & Deschaux, P. The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review.Aquat. Toxicol. 77, 229–238 (2006).PubMedCrossRefGoogle Scholar
  2. 2.
    Davila, D. R.et al. Role of alterations in Ca(2+)-associated signaling pathways in the immunotoxicity of polycyclic aromatic hydrocarbons.J. Toxicol. Environ. Health 45, 101–126 (1995).PubMedCrossRefGoogle Scholar
  3. 3.
    Warshawsky, D.et al. Biotransformation of benzo[a] pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light.Chem. Biol. Interact. 97, 131–148 (1995).PubMedCrossRefGoogle Scholar
  4. 4.
    Nesto, N.et al. Bioaccumulation and biomarker responses of trace metals and micro-organic pollutants in mussels and fish from the Lagoon of Venice, Italy.Mar. Pollut. Bull. 55, 469–484 (2007).PubMedCrossRefGoogle Scholar
  5. 5.
    Cheikyula, J. O., Koyama, J. & Uno, S. Comparative study of bioconcentration and EROD activity induction in the Japanese flounder, red sea bream, and Java medaka exposed to polycyclic aromatic hydrocarbons.Environ. Toxicol. 23, 354–362 (2008).PubMedCrossRefGoogle Scholar
  6. 6.
    van der Oost, R., Beyer, J. & Vermeulen, N. P. E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review.Environ. Toxicol. Pharmacol. 13, 57–149 (2003).CrossRefGoogle Scholar
  7. 7.
    Cossins, A. R. & Crawford, D. L. Fish as models for environmental genomics.Nat. Rev. Genet. 6, 324–333 (2005).PubMedCrossRefGoogle Scholar
  8. 8.
    Yu, R. M. K.et al. Induction of hepatic choriogenin mRNA expression in male marine medaka: A highly sensitive biomarker for environmental estrogens.Aquat. Toxicol. 77, 348–358 (2006).PubMedCrossRefGoogle Scholar
  9. 9.
    Woo, S., Yum, S., Kim, D.-W. & Park, H.-S. Transcripts level responses in a marine medaka (Oryzias javanicus) exposed to organophosphorus pesticide.Compar. Biochem. Physiol. Part C: Toxicology & Pharmacology 149, 427–432 (2009).CrossRefGoogle Scholar
  10. 10.
    Gehring, W. J. & Hiromi, Y. Homeotic genes and the homeobox.Annu. Rev. Genet. 20, 147–173 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    Shah, N. & Sukumar, S. The Hox genes and their roles in oncogenesis.Nat. Rev. Cancer 10, 361–371.Google Scholar
  12. 12.
    Ashley, R. H. Challenging accepted ion channel biology: p64 and the CLIC family of putative intracellular anion channel proteins (Review).Mol. Membr. Biol. 20, 1–11 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    Averaimo, S., Milton, R. H., Duchen, M. R. & Mazzanti, M. Chloride intracellular channel 1 (CLIC1): Sensor and effector during oxidative stress.FEBS Lett. 584, 2076–2084.Google Scholar
  14. 14.
    Petrova, D. T.et al. Expression of chloride intracellular channel protein 1 (CLIC1) and tumor protein D52 (TPD52) as potential biomarkers for colorectal cancer.Clin. Biochem. 41, 1224–1236 (2008).PubMedCrossRefGoogle Scholar
  15. 15.
    Park, J. H.et al. Functional expression of recombinant human ribonuclease/angiogenin inhibitor in stably transformed Drosophila melanogaster S2 cells.Cytotechnology 57, 93–99 (2008).PubMedCrossRefGoogle Scholar
  16. 16.
    Kerbel, R. S. A cancer therapy resistant to resistance.Nature 390, 335–336 (1997).PubMedCrossRefGoogle Scholar
  17. 17.
    Wang, Z.et al. RACK1, an excellent predictor for poor clinical outcome in oral squamous carcinoma, similar to Ki67.Eur. J. Cancer 45, 490–496 (2009).PubMedCrossRefGoogle Scholar
  18. 18.
    Liszewski, M. K.et al. Control of the complement system.Adv. Immunol. 61, 201–283 (1996).PubMedCrossRefGoogle Scholar
  19. 19.
    Kishore, U. & Reid, K. B. M. C1q: Structure, function, and receptors.Immunopharmacology 49, 159–170 (2000).PubMedCrossRefGoogle Scholar
  20. 20.
    Kishore, U.et al. C1q and tumor necrosis factor superfamily: modularity and versatility.Trends Immunol. 25, 551–561 (2004).PubMedCrossRefGoogle Scholar
  21. 21.
    Campbell, R. D., Gagnon, J. & Porter, R. R. Amino acid sequence around the thiol and reactive acyl groups of human complement component C4.Biochem. J. 199, 359–370 (1981).PubMedGoogle Scholar
  22. 22.
    Wei, W.et al. Cloning and molecular characterization of two complement Bf/C2 genes in large yellow croaker (Pseudosciaena crocea).Fish. Shellfish Immun. 27, 285–295 (2009).CrossRefGoogle Scholar
  23. 23.
    Sambrook, J. G., Figueroa, F. & Beck, S. A genomewide survey of Major Histocompatibility Complex (MHC) genes and their paralogues in zebrafish.BMC Genomics 6, 152 (2005).PubMedCrossRefGoogle Scholar
  24. 24.
    Evrin, P. E. & Nilsson, K. Beta 2-microglobulin production in vitro by human hematopoietic, mesenchymal, and epithelial cells.J. Immunol. 112, 137–144 (1974).PubMedGoogle Scholar
  25. 25.
    Cassuto, J. P.et al. [beta]2-Microglobulin, a tumour marker of lymphoproliferative disorder.The Lancet 312, 108–109 (1978).CrossRefGoogle Scholar
  26. 26.
    Millar, R. P. GnRHs and GnRH receptors.Anim. Reprodu. Sci. 88, 5–28 (2005).CrossRefGoogle Scholar
  27. 27.
    Grundker, C., Huschmand Nia, A. & Emons, G. Gonadotropin-releasing hormone receptor-targeted gene therapy of gynecologic cancers.Mol. Cancer Ther. 4, 225–231 (2005).PubMedCrossRefGoogle Scholar
  28. 28.
    Santini, M. S. & Ronderos, J. R. Allatotropin-like peptide released by Malpighian tubules induces hindgut activity associated with diuresis in the Chagas disease vector Triatoma infestans (Klug).J. Exp. Biol. 210, 1986–1991 (2007).PubMedCrossRefGoogle Scholar
  29. 29.
    Sterkel, M., Riccillo, F. L. & Ronderos, J. R. Cardioacceleratory and myostimulatory activity of allatotropin in Triatoma infestans.Compar. Biochem. Physiol. —Part A: Molecular & Integrative Physiology 155, 371–377.Google Scholar
  30. 30.
    Rooney, P. H.et al. The role of cytochrome P450 in cytotoxic bioactivation: future therapeutic directions.Curr. Cancer Drug Targets 4, 257–265 (2004).PubMedCrossRefGoogle Scholar
  31. 31.
    Schlezinger, J. J. & Stegeman, J. J. Induction and suppression of cytochrome P450 1A by 3,3′,4,4′,5-pentachlorobiphenyl and its relationship to oxidative stress in the marine fish scup (Stenotomus chrysops).Aquat. Toxicol. 52, 101–115 (2001).PubMedCrossRefGoogle Scholar
  32. 32.
    Yang, F. et al. Human transferrin: cDNA characterization and chromosomal localization.Proc. Natl. Acad. Sci. USA 81, 2752–2756 (1984).PubMedCrossRefGoogle Scholar
  33. 33.
    Chen, J., Shi, Y. H. & Li, M. Y. Changes in transferrin and hepcidin genes expression in the liver of the fish Pseudosciaena crocea following exposure to cadmium.Arch. Toxicol. 82, 525–530 (2008).PubMedCrossRefGoogle Scholar
  34. 34.
    Fong, W. P., Cheng, C. H. & Tang, W. K. Antiquitin, a relatively unexplored member in the superfamily of aldehyde dehydrogenases with diversified physiological functions.Cell Mol. Life Sci. 63, 2881–2885 (2006).PubMedCrossRefGoogle Scholar
  35. 35.
    Rodrigues, S. M.et al. Arabidopsis and tobacco plants ectopically expressing the soybean antiquitin-like ALDH7 gene display enhanced tolerance to drought, salinity, and oxidative stress.J. Exp. Bot. 57, 1909–1918 (2006).PubMedCrossRefGoogle Scholar
  36. 36.
    Benjamin, I. J. & McMillan, D. R. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease.Circ. Res. 83, 117–132 (1998).PubMedGoogle Scholar
  37. 37.
    Bukau, B. & Horwich, A. L. The Hsp70 and Hsp60 chaperone machines.Cell 92, 351–366 (1998).PubMedCrossRefGoogle Scholar
  38. 38.
    Lucas, K. A.et al. Guanylyl cyclases and signaling by cyclic GMP.Pharmacol. Rev. 52, 375–414 (2000).PubMedGoogle Scholar
  39. 39.
    Lubbe, W. J.et al. Guanylyl cyclase C prevents colon cancer metastasis by regulating tumor epithelial cell matrix metalloproteinase-9.Cancer Res. 69, 3529–3536 (2009).PubMedCrossRefGoogle Scholar
  40. 40.
    Robinson, M. S. Adaptable adaptors for coated vesicles.Trends Cell Biol. 14, 167–174 (2004).PubMedCrossRefGoogle Scholar
  41. 41.
    Wu, F. & Yao, P. J. Clathrin-mediated endocytosis and Alzheimer’s disease: An update.Ageing Res. Rev. 8, 147–149 (2009).PubMedCrossRefGoogle Scholar
  42. 42.
    Kadenbach, B., Arnold, S., Lee, I. & Huetemann, M. The possible role of cytochrome c oxidase in stressinduced apoptosis and degenerative diseases.Biochimica et Biophysica Acta (BBA) — Bioenergetics 1655, 400–408 (2004).CrossRefGoogle Scholar
  43. 43.
    Payne, C. M.et al. Crypt-restricted loss and decreased protein expression of cytochrome C oxidase subunit I as potential hypothesis-driven biomarkers of colon cancer risk.Cancer Epidemiol. Biomarkers Prev. 14, 2066–2075 (2005).PubMedCrossRefGoogle Scholar
  44. 44.
    Capaldi, R. A. & Aggeler, R. Mechanism of the F1F0-type ATP synthase, a biological rotary motor.Trends Biochem. Sci. 27, 154–160 (2002).PubMedCrossRefGoogle Scholar
  45. 45.
    Grainger, R. J. & Beggs, J. D. Prp8 protein: at the heart of the spliceosome.RNA 11, 533–557 (2005).PubMedCrossRefGoogle Scholar
  46. 46.
    McKie, A. B.et al. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13).Hum. Mol. Genet. 10, 1555–1562 (2001).PubMedCrossRefGoogle Scholar
  47. 47.
    Ma, J., Liao, X. L., Lou, B. & Wu, M. P. Role of apolipoprotein A-I in protecting against endotoxin toxicity.Acta Biochim. Biophys. Sin. (Shanghai) 36, 419–424 (2004).CrossRefGoogle Scholar
  48. 48.
    Duverger, N.et al. Protection against atherogenesis in mice mediated by human apolipoprotein A-IV.Science 273, 966–968 (1996).PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society of Environmental Risk Assessment and Health Science and Springer 2010

Authors and Affiliations

  • Hye-Young Jeon
    • 1
  • Seonock Woo
    • 1
  • Hyokyung Won
    • 1
  • Bora Kim
    • 1
  • Seungshic Yum
    • 1
  1. 1.South Sea Environment Research DepartmentKorea Ocean Research and Development InstituteGeojeKorea

Personalised recommendations