Advertisement

Mathematics Education Research Journal

, Volume 16, Issue 3, pp 58–79 | Cite as

Mathematical modelling in the early school years

  • Lyn D. English
  • James J. Watters
Article

Keywords

Mathematics Education Modelling Problem Modelling Activity Mathematical Idea Personal Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carpenter, T. P., & Romberg, T. A. (2004).Powerful practices in mathematics & science: Research-based practices for teaching and learning. Madison: University of Wisconsin.Google Scholar
  2. Cobb, P. (2000). Conducting teacher experiments in collaboration with teachers. In R. A. Lesh & A. Kelly (Eds.),Handbook of research design in mathematics and science education (pp. 307–334). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  3. Cresswell, J. W. (1997).Qualitative inquiry and research design: Choosing among five traditions. Thousand Oaks, CA: SAGE.Google Scholar
  4. Diezmann, C. M., & Watters, J. J. (2003). The importance of challenging tasks for mathematically gifted students.Gifted and Talented International, 17(2), 76–84.Google Scholar
  5. Diezmann, C., Watters, J. J., & English, L. D. (2002). Teacher behaviours that influence young children’s reasoning. In A. Cockburn & E. Nardi (Eds.),Proceedings of the 26th International PME Conference (pp. 289–296). Norwich: University of East Anglia.Google Scholar
  6. Dockett, S., & Perry, B. (2001). “Air is a kind of wind”: Argumentation and the construction of knowledge. In S. Reifel & M. Brown (Eds.),Early Education and Care, and Reconceptualizing Play, 11, 227–256.CrossRefGoogle Scholar
  7. Doerr, H. M., & English, L. D. (2003). A modeling perspective on students’ mathematical reasoning about data.Journal for Research in Mathematics Education, 34(2), 110–136.CrossRefGoogle Scholar
  8. English, L. D. (2002). Priority themes and issues in international mathematics education research. In L. D. English (Ed.),Handbook of international research in mathematics education (pp. 3–16). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  9. English, L. D. (2003). Reconciling theory, research, and practice: A models and modelling perspective.Educational Studies in Mathematics, 54, 2 & 3, 225–248.CrossRefGoogle Scholar
  10. Erickson, F. (1998). Qualitative research methods for science education. In B. J. Fraser & K. G. Tobin (Eds.),International handbook of science education (Part 2) (pp. 1155–1173). Dordrecht: Kluwer Academic Publishing.Google Scholar
  11. Gainsburg, J. (2004).The mathematical modelling of structural engineers. Paper submitted for publication.Google Scholar
  12. Holstein, J. A., & Gubrium, J. F. (1994). Phenomenology, ethnomethodology and interpretative practice. In N. K. Denzin & Y. S. Lincoln (Eds.),Handbook of qualitative research (pp. 262–285). Thousand Oaks, CA: SAGE.Google Scholar
  13. Inhelder, B., & Piaget, J. (1955/1958).The growth of logical thinking from childhood to adolescence: An essay on the construction of formal operational structures. New York: Basic Books.Google Scholar
  14. Jones, G., Langrall, C., Thornton, C., & Nisbet, S. (2002). Elementary school children’s access to powerful mathematical ideas. In L. D. English (Ed.),Handbook of international research in mathematics education (pp. 113–142). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  15. Lamon, S. (2003). Beyond constructivism: An improved fitness metaphor for the acquisition of mathematical knowledge. In R. A. Lesh & H. M. Doerr (Eds.), Beyond constructivism:Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 435–448). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  16. Lehrer, R., Giles, N. D., & Schauble, L. (2002). Children’s work with data. In R. Lehrer & L. Schauble (Eds.),Investigating real data in the classroom: Expanding children’s understanding of math and science (pp. 1–26). New York: Teachers College Press.Google Scholar
  17. Lehrer, R., & Schauble, L. (2003). Origins and evolutions of model-based reasoning in mathematics and science. In R. A. Lesh & H. Doerr (Eds.),Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 59–70). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  18. Lesh, R. (1998).The NEXT STEP project. Purdue University. Unpublished research document.Google Scholar
  19. Lesh, R., & Doerr, H. M. (2003). (Eds.).Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  20. Lesh, R., & Harel, G. (2003). Problem solving, modelling, and local conceptual development.Mathematical Thinking and Learning, 5, 157–190.CrossRefGoogle Scholar
  21. Lesh, R., & Lehrer, R. (2000). Iterative refinement cycles for videotape analyses of conceptual change. In R. Lesh & A. Kelly (Eds.),Research design in mathematics and science education. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  22. National Council of Teachers of Mathematics (NCTM). (2000).Principles and standards for school mathematics. Reston, VA: Author.Google Scholar
  23. O’Connor J., White J., Greenwood, P., & Mousley, J. (2001).Enabling sciences still on the slippery slide. (Press Release on behalf of the AIP, the RACI, the AMS, the AMSC and the IEA). Retrieved September 2, 2004, from http://www.aip.org.au/initiative2002/index.htmlGoogle Scholar
  24. Perry, B., & Dockett, S. (2002). Young children’s access to powerful mathematical ideas. In L. D. English (Ed.),Handbook of international research in mathematics education (pp. 81–111). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  25. Richardson, K. (2004).A design of useful implementation principles for the development, diffusion, and appropriation of knowledge in mathematics classrooms. Unpublished doctoral dissertation, Purdue University.Google Scholar
  26. Steen, L. A. (Ed.). (2001).Mathematics and democracy: The case for quantitative literacy. National Council on Education and the Disciplines. USA.Google Scholar
  27. Stillman, G. (1998). The emperor’s new clothes? Teaching and assessment of mathematical applications at the senior secondary level. In P. L. Galbraith, W. Blum, G. Booker, & I. Huntley (Eds.),Mathematical modelling: Teaching and assessment in a technology-rich world (pp.243–254). West Sussex: Horwood Publishing Ltd.Google Scholar
  28. Tate, W., & Rousseau, C. (2002). Access and opportunity: The political and social context of mathematics education. In L. D. English (Ed.),Handbook of international research in mathematics education (pp. 271–300). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  29. US Department of Education. (2002).No child left behind. Retrieved June 21, 2004 from http://www.ed.gov/nclb/Google Scholar
  30. Vygotsky, L.S. (1978).Mind in society. Cambridge, MA: Harvard University Press.Google Scholar
  31. Yackel, E., & Cobb, P. (1996). Sociomathematical norms, argumentation, and autonomy in mathematics.Journal for Research in Mathematics Education, 27, 458–477.CrossRefGoogle Scholar
  32. Zawojewski, J. S., Lesh, R., & English, L. D. (2003). A models and modelling perspective on the role of small group learning. In R. A. Lesh & H. Doerr (Eds.),Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 337–358). Mahwah, NJ: Lawrence Erlbaum.Google Scholar

Copyright information

© Mathematics Education Research Group of Australasia Inc. 2005

Authors and Affiliations

  • Lyn D. English
    • 1
  • James J. Watters
    • 1
  1. 1.Department of Mathematics, Science and TechnologyQueensland University of TechnologyKelvin Grove

Personalised recommendations