Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Chlorophyll fluorescence based copper toxicity assessment of two algal species

  • 304 Accesses

  • 8 Citations


Pulse Amplitude Modulated (PAM) fluorometry is a sensitive and rapid method used to assess toxic effect of pollutants in plants as well as algae. This study evaluates the difference in sensitivity of two marine macroalgae,Ulva pertusa andEcklonia cava, to copper. The photosynthetic efficiency of the algae was measured as the ratio of variable to maximal chlorophyll fluorescence (Fv/Fm) as well as maximum electron transport rate (ETRmax). The algae were exposed to 0.125–1 mg/L of copper and their physiology was studied every 24 h for a period of 4 days. Increase in copper concentration caused proportional decrease in the photosynthetic efficiency, particularly ETRmax, of both the species studied. Moreover,U. pertusa proved to be more sensitive to copper thanE. cava, thus implying its use as a toxicity biotest battery.

This is a preview of subscription content, log in to check access.


  1. 1.

    Gledhill, M., Nimmo, M., Hill, S. J. & Brown, M. T. The toxicity of copper (II) species to marine algae, with particular reference to macroalgae.J Phycol 33, 2–11 (1997).

  2. 2.

    Correa, J. A.et al. Copper, copper mine tailing and their effect on marine algae in Northern Chile.J Appl Phycol 11, 57–67 (1999).

  3. 3.

    Nielsen, H. D., Brownlee, C., Coelho, S. M. & Brown, M. T. Inter-population differences in inherited copper tolerance involve photosynthetic adaptation and exclusion mechanisms inFucus serratus.New Phytologist 160, 157–165 (2003).

  4. 4.

    Nielsen, H. D. & Nielsen, S. L. Evaluation of imaging and conventional PAM as a measure of photosynthesis in thin- and thick-leaved marine macroalgae.Aqua Biol 3, 121–131 (2008).

  5. 5.

    Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence-a practical guide.J Exp Bot 51, 659–668 (2000).

  6. 6.

    Global Effluent Guidelines, www.levistrauss.com/ Downloads/GEG2007.pdf (2007).

  7. 7.

    WHO Guideline Expert Consultation for the 4th Edition of the Guidelines for Drinking water Quality, www.who.int/water_sanitation_health/gdwqrevision /gdwq04.pdf (2007).

  8. 8.

    FAO Standards for Effluent Discharge Regulations, http://faolex.fao.org/docs/texts /mat52519.doc (2003).

  9. 9.

    Water Environment Partnership in Asia (WEPA)-Coastal Water Quality Standards for Protecting Human Health, http://www.wepa-db.net/policies/law/ southkorea/cwq_std02.htm (2008).

  10. 10.

    Juneau, P., El Berdey, A. & Popovic, R. PAM fluorometry in the determination of the sensitivity ofChlorella vulgaris, Selenastrum capricornutum and Chlamydomonas reinhardtii to copper.Arch Environ Contam Toxicol 42, 155–164 (2002)

  11. 11.

    Clarke, R. B. inMarine Pollution, 1st Edn (Oxford Science Publications Clarendon Press, Oxford, New York, 1986).

  12. 12.

    Barraza, J. E. & Carballeira, A. Chlorophyll fluorescence analysis and cadmium copper bioaccumulation in Ulva rigida (C. Agardh).Bol Inst Esp Oceanogr 15, 395–399 (1999).

  13. 13.

    Webster, E. A. & Gadd, G. M. Perturbation of monovalent cation composition inUlva lactuca by cadmium, copper and zinc.BioMetals 9, 51–56 (1996).

  14. 14.

    Han, T., Kang, S. H., Park, J. S., Lee, H. K. & Brown, M. T. Physiological responses of Ulva pertusa and U. armoricana to copper exposure.Aqua Toxicol 86, 176–184 (2008).

  15. 15.

    Wilson, W. B. & Freeberg, L. R. inToxicity of Metals to Marine Phytoplankton Cultures-report R801 511 (Texas A&M Research Foundation College Station, Texas, 1979).

  16. 16.

    Mamboya, F. A., Pratap, H. B., Mtolera, M. & Björk M. inProceeding of the conference on Advances on Marine Sciences in Tanzania: The effect of copper on the daily growth rate and photosynthetic efficiency of the brown macroalga Padina boergesenii (eds Richmond, M. D. & Francis, J.) 185–192 (1999).

  17. 17.

    Pätsikkä, E., Aro, E. M. & Tyystjärvi, E. Increase in the quantum yield of photoinhibition contributes to copper toxicity in vivo.Plant Physiol 117, 619–627 (1998).

  18. 18.

    Karukstis, K. K. inChlorophylls (ed Scheer, H.) 770–797 (CRC Press, London, 1991).

  19. 19.

    Wu, Z. X., Gan, N. Q., Huang, Q. & Song, L. R. Response ofMicrocystis to copper stress-Do phenotypes of Microcystis make a difference in stress tolerance?Environ Poll 147, 324–330 (2007).

  20. 20.

    Schreiber, U. inChlorophyll a Fluorescence: A signature of photosynthesis (eds Papageorgiou, G. C. & Govindjee) 279–319 (Springer, Amsterdam, 2004).

  21. 21.

    Platt, T., Gallegosc, L. & Harrisonw, G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton.J Mar Res 38, 687–701 (1980).

Download references

Author information

Correspondence to Taejun Han.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kumar, K.S., Han, Y., Choo, K. et al. Chlorophyll fluorescence based copper toxicity assessment of two algal species. Toxicol. Environ. Health. Sci. 1, 17–23 (2009). https://doi.org/10.1007/BF03216459

Download citation


  • Chlorophylla fluorescence
  • Copper
  • Ecklonia cava
  • Ulva pertusa
  • ]ETRmax
  • Fv/Fm