Gold Bulletin

, Volume 40, Issue 3, pp 206–212

A facile and completely green route for synthesizing gold nanoparticles by the use of drink additives

Open Access
Gold 2006 Scientific Papers

Abstract

A facile and completely green route to synthesize Au nanoparticles by mixing the Au(III) ions-dissolved rice wine and soda at a slightly elevated temperature in the absence of extra protective agents was developed. Rice wine was used as a solvent and a reducing agent. Also, soda not only functioned as a protective agent but also played a role of base catalyst. No extra protective agents are needed. From the analyses of UV/VIS absorption spectra, TEM, and XRD patterns, the formation of Au nanoparticles was recognized. The appropriate pH and temperature were around 6.5 and 25–55°C, respectively. The resultant solution was quite stable. No precipitation occurred even after several months. In addition, rice wine and soda are often used as the additives of drinks or foods, and are easily obtained in our daily life. So, it becomes possible that people can easily make the Au nanoparticles at home by the route proposed in this work.

Keywords

Gold nanoparticles green chemistry synthesis 

References

  1. 1.
    M. Poliakoff, P. Anastas,Nature, 2001,413, 257CrossRefGoogle Scholar
  2. 2.
    M. Poliakoff, J.M. Fitzpatrick, T.R. Farren, P.T. Anastas,Science, 2002,297, 807CrossRefGoogle Scholar
  3. 3.
    R.A. Gross, B. Kalra,Science, 2002,297, 803CrossRefGoogle Scholar
  4. 4.
    J.M. DeSimone,Science, 2002,297, 799CrossRefGoogle Scholar
  5. 5.
    P. Raveendran, J. Fu, S.L. Wallen,J. Am. Chem. Soc., 2003,125, 13940CrossRefGoogle Scholar
  6. 6.
    M.C. Daniel, D. Astruc,Chem. Rev., 2004,104, 293CrossRefGoogle Scholar
  7. 7.
    M. Haruta,Cattech, 2002,6, 102–115CrossRefGoogle Scholar
  8. 8.
    M. Zayats, A.B. Kharitonov, S.P. Pogorelova, O. Lioubashevski, E. Katz, I. Willner,J. Am. Chem. Soc., 2003,125, 16006CrossRefGoogle Scholar
  9. 9.
    W. Jahn,J. Struct. Biol., 1999,127, 106CrossRefGoogle Scholar
  10. 10.
    S.A. Maier, M.L. Brongersma, P.G. Kik, S. Meltzer, A.A.G. Requicha, H.A. Atwater,Adv. Mater., 2001,13, 1501CrossRefGoogle Scholar
  11. 11.
    D.A. Handley,Colloidal Gold: Principles, Methods, and Applications, Hayat M. A. Ed., Academic Press: San Diego, 1989; Vol. 1, Chapter 2Google Scholar
  12. 12.
    C. Mangeney, F. Ferrage, I. Aujard, V. Marchi-Artzner, L. Lullien, O. Ouari, E.D. Rékaï, A. Laschewsky, I. Vikholm, J.W. Sadowski,J. Am. Chem. Soc., 2002,124, 5811CrossRefGoogle Scholar
  13. 13.
    M. Schulz-Dobrick, K.V. Sarathy, M. Jansen,J. Am. Chem. Soc., 2005,127, 12816CrossRefGoogle Scholar
  14. 14.
    M. Aslam, L. Fu, M. Su, K. Vijayamohanan, V. P. Dravid,J. Mater. Chem., 2004,14, 1795CrossRefGoogle Scholar
  15. 15.
    J. Liu, G. Qin, P. Raveendram, Y. Ikushima,Chem. Eur. J., 2006,12, 2131CrossRefGoogle Scholar
  16. 16.
    S. Si, R.R. Bhattacharjee, A. Banerjee, T.K. Mandal,Chem. Eur. J., 2006,12, 1256CrossRefGoogle Scholar
  17. 17.
    M.N. Nadagouda, R.S. Varma,Green Chem., 2006,8, 516CrossRefGoogle Scholar
  18. 18.
    P. Raveendran, J. Fu, S.L. Wallen,Green Chem., 2006,8, 34CrossRefGoogle Scholar
  19. 19.
    B. Ankamwar, C. Damle, A. Ahmad, M. Sastry, J. Nanosci.Nanotech., 2005,5, 1665Google Scholar
  20. 20.
    H. Hirai, Y. Nakao, N. Toshima,J. Macromol. Sci. Chem., 1979,A13, 727CrossRefGoogle Scholar
  21. 21.
    J. Chatt, B.L. Shaw, A.E. Field,J. Chem. Soc., 1964, 3466Google Scholar
  22. 22.
    K.S. Lee, M.A. El-Sayed,J. Phys. Chem. B, 2005,109, 20331CrossRefGoogle Scholar
  23. 23.
    J.C. Hulteen, C.J. Patrissi, D.L. Miner, E.R. Crosthwait, E.B. Oberhauser, C.R. Martin,J. Phys. Chem. B, 1997,101, 7727CrossRefGoogle Scholar
  24. 24.
    Z.Y. Huang, G. Mills, B. Hajek,J. Phys. Chem., 1993,97, 11542CrossRefGoogle Scholar

Copyright information

© World Gold Council 2007

Authors and Affiliations

  1. 1.Department of Chemical Engineering National ChengKung University TainanTaiwan, R.O.C.

Personalised recommendations