Advertisement

Gold Bulletin

, Volume 37, Issue 1–2, pp 27–36 | Cite as

Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications

  • Masatake Haruta
Open Access
Article

Abstract

Gold can be deposited as nanoparticles on a variety of support materials by coprecipitation or deposition-precipitation of Au(OH)3, grafting of organo-gold complexes such as dimethyl-Au(III)-acetylacetonate, mixing of colloidal Au particles, and vacuum deposition. Owing to the moderate adsorption of at least one of reactants (for example, CO) on the edges and corners of Au nanoparticles and to the activation of the counter reactant (for example, O2) at the perimeter interface with the supports, supported Au nanoparticle catalysts exhibit unique and practically useful catalytic properties at relatively low temperature below 473K. They have already been commercially used for deodorizers in rest rooms in Japan and will find growing applications in indoor air quality control, pollutant emission control, production of hydrogen energy carrier, and innovations in chemical processes. Cluster science of Au may also open an exciting area of research showing some magic numbers for dramatic changes in reactivity.

Keywords

TiO2 Co3O4 Gold Catalyst Gold Bulletin Metal Oxide Support 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    1 M. Haruta, N. Yamada, T. Kobayahsi and S. Iijima,J. Catal., 1989,115, 301CrossRefGoogle Scholar
  2. 2.
    2 G.C. Bond and D.T. Thompson,Catal. Rev. — Sci. Eng., 1999,41, 319CrossRefGoogle Scholar
  3. 3.
    3 M. Haruta and M. Daté,Appl. Catal. A: General, 2001,222, 427CrossRefGoogle Scholar
  4. 4.
    4 M. Haruta,CATTECH, 2002,6 (3), 102CrossRefGoogle Scholar
  5. 5.
    5 M. Haruta,Chem. Record, 2003,3, 75CrossRefGoogle Scholar
  6. 6.
    M. Haruta, S. Tsubota and M. Okumura,“Advances in Catalyst Preparation (in Japanese)”, Y. Ono et al. eds., Assoc. for the Promotion of Catal. Preparation Chem., Tokyo, 2000, p39Google Scholar
  7. 7.
    7 M. Haruta, H. Kageyama, N. Kamijo, T. Kobayashi and F. Delannay,Stud. Surf. Sci. Catal., 1988,44, 33CrossRefGoogle Scholar
  8. 8.
    8 H. Kageyama, N. Kamijo, T. Kobayashi and M. Haruta,Physica, 1989, B158, 183Google Scholar
  9. 9.
    M. Haruta, T. Kobayashi, S. Tsubota and Y. Nakahara,Jpn. Pat. 1778730 (1993)Google Scholar
  10. 10.
    10 R.M. Torres Sanchez, A. Ueda, K. Tanaka and M. Haruta,J. Catal., 1997,168, 125CrossRefGoogle Scholar
  11. 11.
    M. Shibata, N. Kuwata, T. Matsumoto and H. Kimura,Chem. Lett., 1985, 1605Google Scholar
  12. 12.
    T. Kobayashi, M. Haruta, S. Tsubota and H. Sano,Sensors and Actuators B1, 1990, 222Google Scholar
  13. 13.
    13 S. Tsubota, M. Haruta, T. Kobayashi, A. Ueda and Y. Nakahara,Stud. Surf. Sci. Catal., 1991,63, 695CrossRefGoogle Scholar
  14. 14.
    14 W. Vogel, D.A.H. Cunningham, K. Tanaka and M. Haruta,Catal. Lett., 1996,40, 175CrossRefGoogle Scholar
  15. 15.
    15 Y. Yuan, A.P. Kozlova, K. Asakura, H. Wan, K. Tsai and Y. Iwasawa,J. Catal., 1997,170, 191CrossRefGoogle Scholar
  16. 16.
    M. Okumura and M. Haruta,Chem. Lett., 2000, 396.Google Scholar
  17. 17.
    M. Okumura, K. Tanaka A. Ueda and M. Haruta,Solid State Ionics, 1997,95, 143CrossRefGoogle Scholar
  18. 18.
    M. Okumura, S. Tsubota, M. Iwamoto and M. Haruta,Chem. Lett., 1998, 315Google Scholar
  19. 19.
    19 J-D. Grunwaldt, C. Kiener, C. Wögerbauer and A. Baiker,J. Catal., 1999, 181, 223CrossRefGoogle Scholar
  20. 20.
    L. Prati and M. Rossi,“Green Chemistry: Challenging Perspectives”, P. Tundo, P. Anastas, eds., Oxford, 2000, p183Google Scholar
  21. 21.
    21W.T. Wallace and R.L. Whetten,J. Phys. Chem., 2000, B104, 10964Google Scholar
  22. 22.
    Kishi, M. Daté and M. Haruta,Surf. Sci., 2001,486, L475CrossRefGoogle Scholar
  23. 23.
    M. Valden, S. Pak, X. Lai and D.W. Goodman,Catal. Lett., 1998,56, 7CrossRefGoogle Scholar
  24. 24.
    R. Zanella, S. Giorgio, C.R. Henry and C. Louis,J. Phys. Chem. B., 2002,106, 7634CrossRefGoogle Scholar
  25. 25.
    C.E. Larsson, T.H. Baum and R.L. Jackson,J Electrochem. Soc., 1987,134, 266CrossRefGoogle Scholar
  26. 26.
    T. Akita, P. Lu, S. Ichikawa, K. Tanaka and M. Haruta,Surf. Interface Anal., 2001,31, 73CrossRefGoogle Scholar
  27. 27.
    M. Haruta, B.S. Uphade, S. Tsubota and A. Miyamoto,Res. Chem. Intermed.,1998,24, 329CrossRefGoogle Scholar
  28. 28.
    M. Okumura, T. Akita, M. Haruta, X. Wang, O. Kajikawa and O. Okada,Appl. Catal. B: Environomental, 2003,41, 43CrossRefGoogle Scholar
  29. 29.
    G. Ertl,Chem. Record, 2001,1, 33CrossRefGoogle Scholar
  30. 30.
    G.R. Bamwenda, S. Tsubota, T. Nakamura and M. Haruta,Catal. Lett., 1997,44, 83CrossRefGoogle Scholar
  31. 31.
    Z.M. Liu and M.A. Vannice,Catal. Lett., 1997,43, 51CrossRefGoogle Scholar
  32. 32.
    S. Tsubota, T. Nakamura, K. Tanaka and M. Haruta,Catal. Lett., 1998,56, 131CrossRefGoogle Scholar
  33. 33.
    M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura and M. Azuma, M. Haruta,Catal. Lett., 1998,51, 53CrossRefGoogle Scholar
  34. 34.
    M. Daté and M. Haruta,J. Catal., 2001,201, 221CrossRefGoogle Scholar
  35. 35.
    M. Haruta, T. Kobayashi, S. Tsubota and Y. Nakahara,Chem. Express, 1998,3, 159Google Scholar
  36. 36.
    D.A.H. Cunningham, W. Vogel, H. Kageyama, S. Tsubota and M. Haruta,J. Catal., 1998,177, 1CrossRefGoogle Scholar
  37. 37.
    J. Lipkowski and P.N. Jr. Ross, “Electrocatalysis, Frontiers in Electrochemistry”, VCH, New York, 1997, Vol. 5Google Scholar
  38. 38.
    M. Haruta, “{Catalysis and Electrocatalysis on Nanoparticles}”, A. Wieckowski, E.R. Savinova, C.G. Vayenas, eds., Marcel Dekker, New York, 2003, p645Google Scholar
  39. 39.
    Y. Iizuka, T. Tode, T. Takao, K. Yatsu, T. Takeuchi, S. Tsubota and M. Haruta,J. Catal., 1999,187, 50CrossRefGoogle Scholar
  40. 40.
    M. Mavrikakis and P. Stoltze and J.K. Nørskov,Catal. Lett., 2000,64, 101CrossRefGoogle Scholar
  41. 41.
    C.H.F. Peden, “Surface Science of Catalysis — In Situ Probes and Reaction Kinetics”, ACS Symp. Ser. 482, D.J. Dwyer and F.M. Hoffmann, eds.,Amer. Chem. Soc., Washington DC, 1992, p. 143CrossRefGoogle Scholar
  42. 42.
    M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama and M.J. Genet and B. Delmon,J. Catal., 1993,144, 175CrossRefGoogle Scholar
  43. 43.
    F. Boccuzzi, A. Chiorino, M. Manzoli, P. Lu, T. Akita and S. Ichikawa and M. Haruta,J. Catal., 2001,202, 256CrossRefGoogle Scholar
  44. 44.
    C. Ruggiero and P. Hollins,Surf. Sci., 1997,377–379, 583CrossRefGoogle Scholar
  45. 45.
    M. Olea, M. Kunitake, T. Shido and Y. Iwasawa,Phys. Chem. Chem. Phys., 2001,3, 627CrossRefGoogle Scholar
  46. 46.
    M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak and R.J. Behm,J. Catal., 2001,197, 113CrossRefGoogle Scholar
  47. 47.
    H. Liu, A.I. Kozlov, A.P. Kozlova, T. Shido, K. Asakura and Y. Iwasawa,J. Catal., 1999,185, 252CrossRefGoogle Scholar
  48. 48.
    M. Okumura, J.M. Coronado, J. Soria, M. Haruta and J.C. Conesa,J. Catal., 2001,203, 168CrossRefGoogle Scholar
  49. 49.
    S. Minicò, S. Scirè, C. Crisafulli, A.M. Visco and S. Galvagno,Catal. Lett., 1997,47, 273CrossRefGoogle Scholar
  50. 50.
    Z. Hao, L. An, H. Wang and T. Hu,React. Kinet. Catal. Lett., 2000,70, 153.CrossRefGoogle Scholar
  51. 51.
    D. Horváth, L. Toth and L. Guczi,Catal. Lett., 2000,67, 117CrossRefGoogle Scholar
  52. 52.
    F.E. Wagner, S. Galvagno, C. Milone, A.M. Visco, L. Stievano and S. Calogero,J. Chem. Soc. Faraday Trans., 1997,93, 3403CrossRefGoogle Scholar
  53. 53.
    H. Kageyama, K. Kadono, K. Fukumi, T. Akai, N. Kamijo and M. Haruta,J. Phys. IV France 7, 1997,C2, 935Google Scholar
  54. 54.
    S. Tsubota, D.A.H. Cunningham and M. Haruta,Stud. Surf. Sci. Catal., 1995,91, 227CrossRefGoogle Scholar
  55. 55.
    Y. Kobayashi, S. Nasu, S. Tsubota and M. Haruta,Hyperfine Interactions, 2000,126, 95CrossRefGoogle Scholar
  56. 56.
    G.C. Bond and D.T. Thompson,Gold Bull., 2000,33, 41CrossRefGoogle Scholar
  57. 57.
    H.H. Kung, M.C. Kung and C.K. Costello,J. Catal., 2003,216, 425CrossRefGoogle Scholar
  58. 58.
    M. Valden, X. Lai and D.W. Goodman,Science, 1998,281, 1647CrossRefGoogle Scholar
  59. 59.
    A. Cho,Science, 2003,299, 1684CrossRefGoogle Scholar
  60. 60.
    Y. Usami, K. Kagawa, M. Kawazoe, Y. Matsumura, H. Sakurai and M. Haruta,Appl. Catal. A: General, 1998,171, 123CrossRefGoogle Scholar
  61. 61.
    W. Shen, Y. Ichihashi, M. Okumura and Y. Matsumura,Catal. Lett., 2000,64, 23CrossRefGoogle Scholar
  62. 62.
    S. Golunsky, R. Rajaram, N. Hodge, G. Hutchings and C.J. Kiely,Catal. Today, 2002,72, 107CrossRefGoogle Scholar
  63. 63.
    U. Heiz and W.-D. Schneider,J. Phys. D: Appl. Phys., 2000,33, R85CrossRefGoogle Scholar
  64. 64.
    F. Cosandey and T.E. Madey,Surf. Rev. Lett., 2001,8, 73Google Scholar
  65. 65.
    V.A. Bondzie, S.C. Parker and C.T. Campbell,Catal. Lett., 1999,63, 143CrossRefGoogle Scholar
  66. 66.
    B. Hammer and J.K. Nørskov,Nature, 1995,376, 238CrossRefGoogle Scholar
  67. 67.
    S. Abbet, U. Heiz, H. Häkkinen and U. Landman,Phys. Rev. Lett., 2001,86, 5950CrossRefGoogle Scholar
  68. 68.
    H.-G. Boyen, et al.,Science, 2002,297, 1533CrossRefGoogle Scholar
  69. 69.
    J. Li, X. Li, H.-J. Zhai, L.-S. Wang,Science, 2003,299, 864CrossRefGoogle Scholar
  70. 70.
    R. Schlögl,CATTECH, 2001,5, 146CrossRefGoogle Scholar
  71. 71.
    D.A.H. Cunningham, T. Kobayashi, N. Kamijo and M. Haruta,Catal. Lett., 1994,25, 257CrossRefGoogle Scholar
  72. 72.
    M. Haruta, M. Yoshizaki, D.A.H. Cunningham and T. Iwasaki, “Ultraclean Technology (in Japanese)”, 1996,8, 1Google Scholar
  73. 73.
    M. Daté, M. Okumura, S. Tsubota and M. Haruta, submitted toProc. Gold 2003, Vancouver, 2003Google Scholar

Copyright information

© World Gold Council 2004

Authors and Affiliations

  • Masatake Haruta
    • 1
  1. 1.Research Institute for Green TechnologyAISTTsukubaJapan

Personalised recommendations