Advertisement

Gold Bulletin

, Volume 31, Issue 1, pp 22–25 | Cite as

Relativistic effects and the chemistry of gold

  • Neil Bartlett
Open Access
Article

Abstract

In atoms of high nuclear charge (Z), as a consequence of a relativistic effect, the s electrons of an atom become more bound and their orbitals smaller than if this effect were absent. Simultaneously, the d (and f ) electrons are less bound because of this effect, which scales roughly as Z2. Gold exhibits a large relativistic effect. This accounts for gold being more resistant to oxidation than silver. It also accounts for higher oxidation states being more accessible in gold than in silver. These effects are illustrated by some fluorine chemistry of gold and silver.

Keywords

Relativistic Effect Electron Affinity High Oxidation State Metallic Gold Gold Bulletin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Pitzer,Accnts. Chem. Res., 1979,12, 271CrossRefGoogle Scholar
  2. 2.
    P. Pyykkö and J-P. Desclaux,Accnts. Chem. Res., 1979,12, 276CrossRefGoogle Scholar
  3. 3.
    N. Kaltsoyannis,J. Chem. Soc., Dalton Trans., 1997, 1Google Scholar
  4. 4.
    P. Pyykkö,Chem. Rev., 1988,88, 563CrossRefGoogle Scholar
  5. 5.
    A. Bayler, A. Schier, G. A. Bowmaker, and H. Schmidbaur,J. Am. Chem. Soc., 1996,118, 7006; and U. M. Tripathi, A. Bauer, and H. Schmidbaur, J. Chem. Soc., Dalton Trans., 1997, 2865CrossRefGoogle Scholar
  6. 6.
    W. E. Spicer, A. H. Sommer, and J. G. White,Phys. Rev., 1959,115, 57CrossRefGoogle Scholar
  7. 7.
    C. E. Moore, ‘Atomic Energy Levels’, Natl. Bur. Stand. (U. S. ) Circ. 467, U. S. Govt. Print. Off. Washington, D. C., 1958Google Scholar
  8. 8.
    H. Hotop, R. A. Bennet, and W. C. Lineberger,J. Chem. Phys., 1973,58, 2373; H. Hotop, and W. C. Lineberger,ibid., 1973,58, 2379CrossRefGoogle Scholar
  9. 9.
    L. Brewer, Lawrence Berkeley Laboratory Report LBL 3720 Rev. May 4, 1977Google Scholar
  10. 10.
    H. E. Swanson, and E. Tatge, ‘Standard X-ray Diffraction Powder Patterns’, Natl. Bur. Stand. (U. S. ) Circ. 539, U. S. Govt. Print. Off. Washington, D. C., 1953, Vol I pp. 23 and 33Google Scholar
  11. 11.
    N. E. Christensen, and B. O. Seraphin,Phys. Rev. B, 1971,4, 3321CrossRefGoogle Scholar
  12. 12.
    W. S. Rapson,Gold Bull., 1996,29, 143CrossRefGoogle Scholar
  13. 13.
    G. Lucier, S. H. Elder, L. Chacón and N. Bartlett,Eur. J. Sol. St. Inorg. Chem., 1996,33, 809Google Scholar
  14. 14.
    G. M. Lucier, J. M. Whalen, and N. Bartlett,J. Fluo. Chem., 1998,89, 101CrossRefGoogle Scholar
  15. 15.
    G. M. Lucier, and N. Bartlett, to be publishedGoogle Scholar
  16. 16.
    B. Zemva, K. Lutar, A. Jesih, W. J. Casteel, Jr., A. P. Wilkinson, D. E. Cox, R. B. Von Dreele, H. Borrmann, and N. Bartlett,J. Am. Chem. Soc., 1991,113, 4192CrossRefGoogle Scholar
  17. 17.
    K. Lutar, S. Milicev, B. Zemva, B. G. Müller, B. Bachmann, and R. Hoppe,Eur. J. Sol. St. Inorg. Chem., 1991,28, 1335Google Scholar
  18. 18.
    U. Engelmann, and B. G. Müller,Z. anorg. allg. Chem., 1991,598/599, 103CrossRefGoogle Scholar
  19. 19.
    S. H. Elder, G. M. Lucier, F. J. Hollander, and N. Bartlett,J. Am. Chem. Soc., 1997,119, 1020CrossRefGoogle Scholar
  20. 20.
    K. Lutar, A. Jesih, I. Leban, B. Zemva, and N. Bartlett,Inorg. Chem., 1989,28, 3467CrossRefGoogle Scholar
  21. 21.
    N. Bartlett,Angew. Chem. Int. Ed., 1968,7, 433CrossRefGoogle Scholar
  22. 22.
    N. Bartlett and K. Leary,Rev. Chimie Minérale, 1976,13, 82Google Scholar
  23. 23.
    E. Miyoshi and Y. Sakai,J. Chem. Phys., 1988,89, 7363CrossRefGoogle Scholar
  24. 24.
    G. Lucier, C. Shen, W. J. Casteel, Jr., L. Chacón, and N. Bartlett,J. Fluor. Chem., 1995,72, 15CrossRefGoogle Scholar

Copyright information

© World Gold Council 1998

Authors and Affiliations

  • Neil Bartlett
    • 1
  1. 1.Department of Chemistry, and Chemical Sciences Division, LBNLUniversity of CaliforniaBerkeley

Personalised recommendations