Gold Bulletin

, Volume 40, Issue 1, pp 6–14 | Cite as

Optical strain detectors based on gold/elastomer nanoparticulated films

  • Miguel A. Correa-Duarte
  • Verónica Salgueiriño-Maceira
  • Antonio Rinaldi
  • Karl Sieradzki
  • Michael Giersig
  • Luis M. Liz-Marzán
Open Access


The application of two different optical effects is demonstrated for the detection of strain applied to elastomeric films. On one hand, dense coatings made of silica-coated gold nanoparticles (Au@SiO2 NPs), which are built up onto poly(dimethylsiloxane) (PDMS) elastomeric films, using the layer-by-layer (LbL) method, provide intense surface plasmon resonance (SPR) absorption. On the other hand, polystyrene spheres can be deposited as ordered monolayers to create patterned PDMS films with well-defined light diffraction. Both effects were used to monitor the structural damage of such PDMS films upon stretching, remaining both physical phenomena (absorption from the gold film and diffraction from the ordered structure) active for optical sensing applications in the early detection of structural damage in critical infrastructures.


Silica Shell PDMS Film ALLYLAMINE Hydrochloride Elastomeric Film Silica Shell Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Krasteva, I. Besnard, B. Guse, R. E. Bauer, K. Muellen, A. Yasuda, T. Vossmeyer,Nano Letters 2002,2, 551CrossRefGoogle Scholar
  2. 2.
    G. Raschke, S. Kowarik, T. Franzl, C. Soennichsen, T. A. Klar, J. Feldmann, A. Nichtl, K. Kuerzinger,Nano Letters 2003,3, 935CrossRefGoogle Scholar
  3. 3.
    Y. Cao, R. Jin, C. A. Mirkin,Journal of the American Chemical Society 2001,123, 7961CrossRefGoogle Scholar
  4. 4.
    J. H. Fendler,Chemistry of Materials 2001,13, 3196CrossRefGoogle Scholar
  5. 5.
    C. A. Mirkin,Inorganic Chemistry 2000,39, 2258CrossRefGoogle Scholar
  6. 6.
    T. Morris, H. Copeland, E. McLinden, S. Wilson, G. Szulczewski,Langmuir 2002,18, 7261CrossRefGoogle Scholar
  7. 7.
    N. Nath, A. Chilkoti,Journal of the American Chemical Society 2001,123, 8197CrossRefGoogle Scholar
  8. 8.
    S. R. Sershen, S. L. Westcott, N. J. Halas, J. L. West,Applied Physics Letters 2002,80, 4609CrossRefGoogle Scholar
  9. 9.
    Z.-S. Wang, T. Sasaki, M. Muramatsu, Y. Ebina, T. Tanaka, L. Wang, M. Watanabe,Chemistry of Materials 2003,15, 807CrossRefGoogle Scholar
  10. 10.
    A. Henglein,Journal of Physical Chemistry 1993,97, 5457CrossRefGoogle Scholar
  11. 11.
    P. Mulvaney,Langmuir 1996,12, 788CrossRefGoogle Scholar
  12. 12.
    S. Link, M. A. El-Sayed,Journal of Physical Chemistry B 1999,103, 8410CrossRefGoogle Scholar
  13. 13.
    S. J. Oldenburg, R. D. Averitt, S. L. Westcott, N. J. Halas,Chemical Physics Letters 1998,288, 243CrossRefGoogle Scholar
  14. 14.
    L. M. Liz-Marzán,Langmuir 2006,22, 32CrossRefGoogle Scholar
  15. 15.
    C. Y. Chen, E. Burstein,Physical Review Letters 1980,45, 1287CrossRefGoogle Scholar
  16. 16.
    S. Link, M. A. El-Sayed,Journal of Physical Chemistry B 1999,103, 4212CrossRefGoogle Scholar
  17. 17.
    T. Teranishi, S. Hasegawa, T. Shimizu, M. Miyake,Advanced Materials (Weinheim, Germany) 2001,13, 1699CrossRefGoogle Scholar
  18. 18.
    S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht, M. A. El-Sayed,Journal of Physical Chemistry A 1999,103, 1165CrossRefGoogle Scholar
  19. 19.
    C. P. Collier, R. J. Saykally, J. J. Shiang, S. E. Henrichs, J. R. Heath,Science (Washington, D. C.) 1997,277, 1978CrossRefGoogle Scholar
  20. 20.
    F. Caruso, M. Spasova, V. Salgueirino-Maceira, L. M. Liz-Marzán,Advanced Materials (Weinheim, Germany) 2001,13, 1090CrossRefGoogle Scholar
  21. 21.
    T. Ung, L. M. Liz-Marzán, P. Mulvaney,Journal of Physical Chemistry B 2001,105, 3441CrossRefGoogle Scholar
  22. 22.
    J. Schmitt, P. Maechtle, D. Eck, H. Moehwald, C. A. Helm,Langmuir 1999,15, 3256CrossRefGoogle Scholar
  23. 23.
    H. Fan, K. Yang, D. M. Boye, T. Sigmon, K. J. Malloy, H. Xu, G. P. Lopez, C. J. Brinker,Science (Washington, DC, United States) 2004,304, 567CrossRefGoogle Scholar
  24. 24.
    M. P. Rowe, K. E. Plass, K. Kim, C. Kurdak, E. T. Zellers, A. J. Matzger,Chemistry of Materials 2004,16, 3513CrossRefGoogle Scholar
  25. 25.
    M. Brust, D. Bethell, D. J. Schiffrin, C. J. Kiely,Advanced Materials (Weinheim, Germany) 1995,7, 795CrossRefGoogle Scholar
  26. 26.
    N. Fishelson, I. Shkrob, O. Lev, J. Gun, A. D. Modestov,Langmuir 2001,17, 403CrossRefGoogle Scholar
  27. 27.
    J. Y. Tseng, M. H. Lin, L. K. Chau,Colloids and Surfaces, A: Physicochemical and Engineering Aspects 2001,182, 239CrossRefGoogle Scholar
  28. 28.
    R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, et al.,Science (Washington, D. C.) 1995,267, 1629CrossRefGoogle Scholar
  29. 29.
    K. C. Grabar, R. G. Freeman, M. B. Hommer, M. J. Natan,Analytical Chemistry 1995,67, 735CrossRefGoogle Scholar
  30. 30.
    A. N. Shipway, M. Lahav, I. Willner,Advanced Materials (Weinheim, Germany) 2000,12, 993CrossRefGoogle Scholar
  31. 31.
    D. L. Feldheim, K. C. Grabar, M. J. Natan, T. E. Mallouk,Journal of the American Chemical Society 1996,118, 7640CrossRefGoogle Scholar
  32. 32.
    R. K. Iler, J. Colloid,Interface Sci. 1966,21, 569CrossRefGoogle Scholar
  33. 33.
    J. Schmitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, R. Shashidhar, J. M. Calvert,Advanced Materials (Weinheim, Germany) 1997,9, 61CrossRefGoogle Scholar
  34. 34.
    A. Yu, Z. Liang, J. Cho, F. Caruso,Nano Letters 2003,3, 1203CrossRefGoogle Scholar
  35. 35.
    D. I. Gittins, A. S. Susha, B. Schoeler, F. Caruso,Adv. Mater. 2002,14, 508CrossRefGoogle Scholar
  36. 36.
    A. S. Angelatos, B. Radt, F. Caruso,Journal of Physical Chemistry B 2005,109, 3071CrossRefGoogle Scholar
  37. 37.
    B. Radt, T. A. Smith, F. Caruso,Advanced Materials (Weinheim, Germany) 2004,16, 2184CrossRefGoogle Scholar
  38. 38.
    P. T. Miclea, A. S. Susha, Z. Liang, F. Caruso, C. M. Sotomayor Torres, S. G. Romanov,Applied Physics Letters 2004,84, 3960CrossRefGoogle Scholar
  39. 39.
    Z. Liang, A. Susha, F. Caruso,Chemistry of Materials 2003,15, 3176CrossRefGoogle Scholar
  40. 40.
    Z. Liang, A. S. Susha, F. Caruso,Advanced Materials (Weinheim, Germany) 2002,14, 1160CrossRefGoogle Scholar
  41. 41.
    W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg,Optics Communications 2003,220, 137CrossRefGoogle Scholar
  42. 42.
    I. El-Kady, M. M. R. Taha, M. F. Su,Applied Physics Letters 2006,88, 253109CrossRefGoogle Scholar
  43. 43.
    A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, M. Giersig,Nano Lett. 2004,4, 1359CrossRefGoogle Scholar
  44. 44.
    M. A. Correa-Duarte, M. Giersig, N. A. Kotov, L. M. Liz-Marzán,Langmuir 1998,14, 6430CrossRefGoogle Scholar
  45. 45.
    L. M. Liz-Marzán, M. Giersig, P. Mulvaney,Langmuir 1996,12, 4329CrossRefGoogle Scholar
  46. 46.
    Krajcinovic D.,Damage Mechanics, North-Holland Series in Applied Mathematics and Mechanics 1996, Vol. 41, Elsevier, AmsterdamGoogle Scholar

Copyright information

© World Gold Council 2007

Authors and Affiliations

  • Miguel A. Correa-Duarte
    • 1
  • Verónica Salgueiriño-Maceira
    • 2
  • Antonio Rinaldi
    • 3
  • Karl Sieradzki
    • 3
  • Michael Giersig
    • 4
  • Luis M. Liz-Marzán
    • 1
  1. 1.Departamento de Química Física and Unidad Asociada CSICUniversidade de VigoVigoSpain
  2. 2.Departamento de Química FísicaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.School of MaterialsArizona State UniversityTempeUSA
  4. 4.CAESARBonnGermany

Personalised recommendations