Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Surface Plasmon Resonance Tunability in Au−VO2 Thermochromic Nano-composites

  • 1269 Accesses

  • 39 Citations


A new type of photo-active nano-composite material appropriate for Ultra-fast Nonlinear Optical χ(3) (ω) applications has been synthesized and optically characterized. Compared to standard noble metal particles- oxide nano-composites exhibiting a superior effective χ(3) (ω) due to the enhancement of the local electric field, these Au−VO2 nano-composites display an additional reversibly tunable surface plasmon frequency under external temperature stimuli. Such a smart plasmon tunability is correlated to the Mott’s type semiconducting/metallic 1st order transition of the host VO2 matrix. The nano-gold surface plasmon wavelength shifts reversibly from 645 nm to 598nm when the Au−VO2 nano-composites temperature varies from 25°C to 120°C.

6 References

  1. 1

    U. Kriebig and M. Vollmer, in “Optical Properties of Metal Clusters”, Springer, Berlin, 1995

  2. 2

    D. Feldheim and C. Foss, in “Metal Nanoparticles: synthesis, Characterization, and Applications”, Marcel-Dekker: New York, 2001

  3. 3

    K. Aslan, J.R. Lakowicz and C.D. Geddes,Anal Biochem. 2004 Jul 1; 330(1), p.145, 2004

  4. 4

    F. Carusoa, M.J. Jory, G.W. Bradberry, J.R. Sambles and D.N. Furlong,J. Appl. Phys. 83, 2, p.5, 1998, Hainfeld, J.F. and Furuya, F.R.A.

  5. 5

    J.F. Hainfeld and F.R.A. Furuya,J. Histochem. Cytochem. 40, p.177, 1992

  6. 6

    M.J. Jory, P.S. Cann and J.R. Sambles,J. Phys. D: Appl. Phys. 27, p.169, 1994

  7. 7

    M.J. Jory, G.W. Bradberry, P.S. Cann and J.R. Sambles,Meas. Sci. Technol. 6, p.1193, 1995

  8. 8

    A.V. Nabok, T. Richardson, F. Davis, C.J.M. Stirling,Langmuir.13, p.3198, 1997

  9. 9

    D.J. Elliot, D.N. Furlong and F. Grieser,Colloids and Surfaces A. 155, p.101, 1999

  10. 10

    V.M. Shalaev,Physics Reports, Vol.272, 2–3, 61, 1996

  11. 11

    I. El Kady, R. Biswas, Y. Ye, M.F. Su, I. Uscasu, M. Pralle, E.A. Johnson, J. Daly and A. Greenwald,Photonics and Nanostructures.1, p. 69, 2003

  12. 12

    L. Novotny, in “Near Field Optics and Surface Plasmon Polaritons“, S. Kawata, Ed.,Topics in Applied Physics.81, p. 123, Springer, Berlin, 2000

  13. 13

    B. Sisck, B. Hecht and L. Novotny,Phys. Rev. Letts. 85, p.44782, 2000

  14. 14

    R. Antoine, B.F. Brevet, H.H. Girault, D. Bethell and D.J. Schiffrin,Chem. Commun. p.1901, 1997

  15. 15

    R. Antoine, M. Pellarin, B. Palpant, M. Broyer, B. Prevel, P. Galletto, P.F. Brevet and H.H. Girault,J. Appl. Phys. 84, p.4532, 1998

  16. 16

    F. Hache, D. Ricard, C. Flytzanis and U. Kriebig,Applied Physics A,47, 347, 1988

  17. 17

    D. Ricard, Ph. Roussignol and C. Flytzanis,Optics Letters 10, 511, 1985

  18. 18

    C. Flytzanis,Prog. Opt. 29, 2539, 1992

  19. 19

    O. Levy, D.J. Bergman and D.G. Stroud,Phys. Rev. B. 52, 3184, 1995

  20. 20

    I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki and A. Nakamura,J. Appl. Phys. 79, p. 1244, 1996

  21. 21

    R.H. Macgruder, L. Yang, R.F. Haglund, C.W. White, L. Li-Yang, R. Dorsinville and R.R. Alfano,Appl. Phys. Lett. 62, p. 1730, 1993

  22. 22

    F. Hache, D. Ricard, C. Flytzanis and U. Kreibig,Appl. Phys. A. 47, p.347, 1988

  23. 23

    H.B. Liao, R.F. Xiao, J.S. Fu, P. Yu, G.K.L. Wong and P. Sheng,Appl. Phys. Lett. 70, p. 1, 1997

  24. 24

    24 J. Venturini, PhD Thesis,University of Paris VI, 16th December 1999, p.185, 1999

  25. 25

    H.B. Liao, R.F. Xiao, J.S. Fu, P. Yu and G.K.L. Wong,Appl. Phys. B. 65, p. 673, 1997

  26. 26

    H.B. Liao, R.F. Xiao, J.S. Fu, H. Wong, K.S. Wong and G.K.L. Wong,Appl. Phys. Lett. 72, p. 1817, 1998

  27. 27

    K. Fukumi, A. Chayahara, K. Kanado, T. Sakagushi, Y. Horino, M. Miya, J. Hayakawa and M. Satou,Jap.J. Appl. Phys. 30, p.742, 1990

  28. 28

    K. Fukumi, A. Chayahara, K. Kanado, T. Sakagushi, Y. Horino, M. Miya, K. Fuji, J. Hayakawa and M. Satou,J. Appl. Phys. 75, p. 3075, 1994

  29. 29

    D. Ricard, P. Roussignol and C. Flytzanis,Opt. Lett. 10, p. 511, 1985

  30. 30

    L. Yang, D.H. Osborne, R.F Haglund, R.H. Macgruder, C.W. White, R.A. Zuhr and H. Hosono,Appl. Phys. A. 62, p. 403, 1996

  31. 31

    S. Ogawa, Y. Hayashi, N. Kobayashi, T. Tokizaki and A. Nakamura,Jpn. J. Appl. Phys. 33, p. 331, 1994

  32. 32

    K. Puech and W. Blau,Opt. Lett. 20, p. 1613, 1995

  33. 33

    J.B. Pendry, A.J. Holden, W.J. Stewart and I. Youngs,Phys. Rev. Lett. 76, 25, 4773, 1996

  34. 34

    D.C. Skillman and C.R. Berry,J. Phys. Chem. 48, 7, 3297, 1967

  35. 35

    S. Schiestel, C.M. Cotell, C.A. Carosella, K.S. Grabowski G.K. Hubler,Nucl. Instrum. Meths. Phys. Res. B. 127–128, 566, 1997

  36. 36

    E.T. Jensen, R.E. Palmer, W. Allison and J.F. Annett,Phys. Rev. Lett. 66, 492, 1991

  37. 37

    S.J. Oldenburg, R.D. Averritt, S.L. Westcot and N.J. Hals,J. Phys. Chem. Lett. 288, p. 243, 1998

  38. 38

    A.J. Bosman and E.E. Havinga,Phys. Rev. 129, p. 1593, 1963

  39. 39

    M.E. Thomas and R.I. Joseph,Infrared Optical Materials, Proc. SPIE 929, p. 87, 1988

  40. 40

    F.J. Morin,Phys. Rev. Lett. 3, 34, 1959

  41. 41

    G.J. Hill and H.R. Martin,Phys. Rev. Lett. A. 27, 34, 1968

  42. 42

    P.P. Edwards, P.V. Ramakrishnan and C.N.R. Rao, in “Metal-Insulator Transitions Revisited”, Eds. P.P. Edwards and C.N.R. Rao, Taylor and Francis, 1995

  43. 43

    N. Mott, in “Metal-Insulator Transitions”, Taylor and Francis, London “1997”

  44. 44

    H.W. Verleur, A.S. Barker Jr. and C.N. Berglund,Phys. Rev. 17 2(1), 788, 1968

  45. 45

    M.F. Becker, A.B. Buckman, R.W. Walser, Th. Lepine, P. George and A. Brun,Appl. Phys. Lett. 65 (12), 150, 1996

  46. 46

    A. Cavalleri, C. Toth, C.W. Siders, J.A. Squier, F. Raksi, P. Forget and J.C. Kieffer,Phys. Rev. Lett. 87, 23, p.237, 2001

  47. 47

    R. Lopez, T.E. Haynes, L.A. Boatner, L.C. Feldman and R.F. Haglund Jr.,Phys. Rev. B. 65, p. 224113, 2002

  48. 48

    R. Lopez, T.E. Haynes, L.A. Boatner, L.C. Feldman and R.F. Haglund Jr.,Optics Lett. 27, p.1327, 2002

  49. 49

    G.I. Petrov, V.V. Yakovlev and J.A. Squier,Optics Letts. 27, Iss. 8, p.655, 2002

  50. 50

    M. Maaza, K. Bouziane, J. Maritz, D.S. McLachlan, R. Swanepoel, J.M. Frogerio and M. Every,Optical Materials 15, 41, 2000

  51. 51

    M. Maaza, O. Nemraoui, C. Sella, G. Hearne, A.C. Beye and B. Baruch-Barak,To Appear in Optics Communications, 2004

  52. 52

    A. Takami, H. Kurita and S. Koda,J. Phys. Chem. B. 103, p. 1226, 1999

  53. 53

    K. Kurihara, J. Kizling, P. Stenius and J.H. Fendler,J. Am. Chem. Soc. 105, p. 2574, 1983

  54. 54

    T.S. Ahmadi, S.L. Logunov and M. El-Sayed,J. Phys. Chem. 100, p. 8053, 1996

  55. 55

    A.S. Barker, H.W. Verler and H.J. Gugenheim,Phys. Rev. Lett. 17, p. 1286, 1966

  56. 56

    Gmelein Handbuch, Vol. 16, Section Vanadium Oxides, p. 482

  57. 57

    M. Maaza, C. Sella, O. Nemraoui, N. Renard and Y. Sampeur,Surface and Coating Technology. Vol. 97, Iss. 1–3, 1997

  58. 58

    W. Haidinger and D. Gross,Thin Solid Films 12, 433, 1972

  59. 59

    D. Adler, in “Solid. State Physics“, Eds. F. Seitz and D. Turnbull and H. Ehrenreich, Academic Press, New York and London, Vol. 21, 1, 1968.

  60. 60

    K.A. Khan, G.A. Niklasson and C.G. Granqvist,J. Appl. Phys. 64(6), 3327, 1988

Download references

Author information

Correspondence to M. Maaza.

Additional information

Dr O. Nemraoui received his PhD from the University of ParisXI in the field of materials sciences. His research is in the field of surface-interface phenomena as well as advanced and multifunctional materials.

Prof. C. Sella is a Professor at University of Paris VI. He is an expert in the field of vacuum technology, thin films and nano-composites synthesis and optical devices.

Prof. A.C. Beye is an expert in materials sciences. He is the founding President of the African Materials Research Society. He is member of the board of directors of the African Laser Centre, Member of the Nelson Mandela — World Bank African Institutes of Science & Technology. He is the initiator of the US NSF-Africa initiative in Materials sciences. His research interests encompass large fields of materials sciences and laser spectroscopy.

Dr. M. Maaza holds a PhD from the University of Paris VI. He was involved extensively in the investigation of surface-Interface phenomena by neutron and X-Rays scattering. His expertise lies within photonics and nano-materials. He is the initiator of the South African Nanotechnology initiative. He is currently the Chairman of the NANOAFNET (NANOsciences AFrican NETwork), an initiative supported by ICTP: UNESCOAIEA. He is the Vice-President of the French Council of Scientists and Engineers: South African section and a member of the Nobel Abdus Salam International Centre for Theoretical Physics.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Maaza, M., Nemraoui, O., Sella, C. et al. Surface Plasmon Resonance Tunability in Au−VO2 Thermochromic Nano-composites. Gold Bull 38, 100–106 (2005).

Download citation


  • Surface Plasmon Resonance
  • Plasmon Resonance
  • Host Matrix
  • Local Electric Field
  • Vanadium Dioxide