Gold Bulletin

, Volume 37, Issue 3–4, pp 187–195 | Cite as

Photochemical synthesis of gold nanoparticles by the sunlight radiation using a seeding approach

  • Shouan Dong
  • Chun Tang
  • Hua Zhou
  • Huaizhi Zhao
Open Access


A novel photochemical synthesis of colloidal gold particles has been studied based on a seed-mediated growth approach under the UV solar radiation on plateau. In the HAuCl4 solution containing certain amounts of protective agent and acetone, the colloidal gold particles with 5 nm (σ=0.86) in average diameter were prepared by UV 300 nm irradiation and used as seeds, their further growth then was carried out in the identical constituent solutions under the UV solar radiation. The results showed that to control the molar ratio of seed to Au(III) ion and use repetitive seeds can obtain different sized and surface-confined gold nanoparticles, and it is completely possible to utilize the UV solar radiation on the plateau with the higher elevation for the size-controlled synthesis of monodisperse gold nanoparticles under suitable conditions. The mechanism of the nucleation, growth and stabilization of gold particles were discussed in detail.


  1. 1.
    C. W. Corti, R. J. Holliday and D. T. Thompson,Gold Bull., 2003,35, 111CrossRefGoogle Scholar
  2. 2.
    M. M. Maye, J. Luo, L. Han, N. N. Kariuki and C. J. Zhong,Gold Bulletin, 2003,36(3), 75CrossRefGoogle Scholar
  3. 3.
    M. Haruta and M. Date,Appl. Catal. A: General, 2001,222, 427CrossRefGoogle Scholar
  4. 4.
    D. T. Thompson,Gold Bull., 1998,31, 111; 1999,32, 12CrossRefGoogle Scholar
  5. 5.
    D. Compton, L. Cornish and E. van der Lingen,Gold Bulletin, 2003,36(1), 10–16;36(2), 51CrossRefGoogle Scholar
  6. 6.
    D. I. Gittins, D. Bethell, D. J. Schiffrin and R. J. Nichols,Nature, 2000,408, 67CrossRefGoogle Scholar
  7. 7.
    M. Shirai, K. Haraguchi, K. Hiruma and T. Katsuyama,Gold Bulletin, 1999,32, 80Google Scholar
  8. 8.
    M. Himmelhaus, H. Takei,Sensors and Actuators B: Chemical 2000,63:1–2:24CrossRefGoogle Scholar
  9. 9.
    D. J. Maxwell, J. R. Taylor, and S. Nie,J. Am. Chem. Soc. 2002,124, 9606CrossRefGoogle Scholar
  10. 10.
    T. A. Taton, C. A. Mirkin and R. L. Letsinger,Sience 2000,289, 1757Google Scholar
  11. 11.
    S. J. Park, T. A. Taton and C. A. Mirkin.Science 2002,295, 1503CrossRefGoogle Scholar
  12. 12.
    Y. W. C. Cao, R. Jin and C. A. Mirkin.Science, 2002,297, 1536CrossRefGoogle Scholar
  13. 13.
    G. Frens,Nature: Physical Science, 1973,241(105), 20Google Scholar
  14. 14.
    M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman,J. Chem. Soc., Chem. Commun. 1994, 801Google Scholar
  15. 15.
    M. Y. Han, C. H. Quek, W. Huang, C. H. Chew and L. M. Gan,Chem. Mater, 1999,11 (4), 1144CrossRefGoogle Scholar
  16. 16.
    J. Lin, W. Zhou,J. O’Connor Charles, Materials Letters, 2001,49, 282Google Scholar
  17. 17.
    T. Teranishi, I. Kiyokawa and M. Mikio,Adv. Mater. 1998,10(8), 596CrossRefGoogle Scholar
  18. 18.
    L. Longenberger and G. Mills,J. Phys. Chem. 1995,99, 475CrossRefGoogle Scholar
  19. 19.
    M. E. Garcia, L. A. Baker and R. M. Crooks,Anal. Chem. 1999,71, 256CrossRefGoogle Scholar
  20. 20.
    K. Esumi, A. Suzuki, N. Aihara, A. Yamahira and K. Torigoe,Langmuir, 2000,16, 2604;16, 2978CrossRefGoogle Scholar
  21. 21.
    B. M. I. Van der Zande, M. R. Bohmer, L. G. J. Fokkin and C. SchonenbergerJ. Phys. Chem. B 1997,101, 852CrossRefGoogle Scholar
  22. 22.
    Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang,J. Phys. Chem. B, 1997,101 (34), 6661CrossRefGoogle Scholar
  23. 23.
    G. T. Wei, F. K. Liu and C. R. C. Wang,Anal. Chem., 1999,71, 2085CrossRefGoogle Scholar
  24. 24.
    H. Qi, T. Zu and Zh. F. Liu,Acta Physica-Chimica Sinica (Chinese), 2000,16(10), 956Google Scholar
  25. 25.
    M. Bianca, I. van der Zande, M. R. Böhmer, L. G. J. Fokkink and C. Schönenberger,Langmuir, 2000,16 (2), 451CrossRefGoogle Scholar
  26. 26.
    K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto and Y. Yobiko,Langmuir, 2001,17(25), 7717CrossRefGoogle Scholar
  27. 27.
    Y. Mizukoshi, K. Okitsu, Y. Maeda, T. A. Yamamoto, R. Oshima and Y. Nagata,J. Phys. Chem. B, 1997,101(36), 7033CrossRefGoogle Scholar
  28. 28.
    A. Henglein,Langmuir, 1999,15(20), 6738CrossRefGoogle Scholar
  29. 29.
    M. Y. Han and C. H. Quek,Langmuir, 2000,16, 362CrossRefGoogle Scholar
  30. 30.
    K. Esumi, K. Matsuhisa and K. Torigoe,Langmuir, 1995,11, 3285CrossRefGoogle Scholar
  31. 31.
    G. Carrot, J. C. Valmalette, C. J. G. Plummer, S. M. Scholz, J. Dutta, H. Hofmann and J. G. Hilborn,Colloid Polym. Sci., 998,276, 853Google Scholar
  32. 32.
    Y. Yonezawa, I. Kawabata and T. Sato,Phys. Chem., 1996,100(1), 39Google Scholar
  33. 33.
    K. Esumi, A. Suzuki, N. Aihara, K. Usui and K. Torigoe,Langmuir, 1998,14, 3157CrossRefGoogle Scholar
  34. 34.
    S. A. Dong, S. X. Wang and Y. K. Pan, The New Progress on Material Science and Engineering’ 2002, Metallurgic Industry Publ. Ltd., Beijing, 2003, p.176Google Scholar
  35. 35.
    K. Mallick, Z. L. Wang and T. Pal,J. Photochem. Photobio. A: Chemistry, 2001,140, 75CrossRefGoogle Scholar
  36. 36.
    K. R. Brown, D. G Walter and M. J. Natan,Chem. Mater. 2000,12, 306CrossRefGoogle Scholar
  37. 37.
    K. R. Brown and M. J. Natan,Langmuir 1998,14, 726CrossRefGoogle Scholar
  38. 38.
    K. R. Brown, L. A. Lyon, A. P. Box, B. D. Reiss, and M. J. Natan,Chem. Mater., 2000,12(2), 314CrossRefGoogle Scholar
  39. 39.
    N. R. Jana, L. Gearheart and C. J. Murphy,Chem. Mater., 2001,13(7), 2313CrossRefGoogle Scholar
  40. 40.
    A. A. M. Sayigh,Solar Energy Engineering, Academic Press, 1977, p.35Google Scholar
  41. 41.
    T. Liu, Y. C. Li, Q. Sh. Liu, B. Wang and R. Q. Huang,J. Yunan Normal University (China), 2001,21(6), 37Google Scholar
  42. 42.
    Q. Y. Xing, R. Q. Xu, Zh. Zhou and W. W. Pei,Fundamental Organic Chemistry (Chinese), 2nd Edition, Higher Educ. Publ. Ltd., 1993, p.425MGoogle Scholar
  43. 43.
    K. Kurihara, J. Kizling, P. Stenius and J. H. Fendler,J. Am. Chem. Soc., 1983,105, 2574CrossRefGoogle Scholar
  44. 44.
    Y. Yonezawa, T. Sato, S. Kuroda and, K. Kuge,J. Chem. Soc. Faraday Trans., 1991,87, 1905CrossRefGoogle Scholar
  45. 45.
    A. Henglein,Chem. Mater., 1998,10(1), 444CrossRefGoogle Scholar
  46. 46.
    K-D. Asmus, A. Henglein, A. Wigger and G. Ber. Bunsen-Ges.Beck, Phys. Chem. 1966,70, 756CrossRefGoogle Scholar
  47. 47.
    H. A. Schwarz and R. W. Dodson,J. Phys. Chem. 1989,93, 409CrossRefGoogle Scholar
  48. 48.
    Quinn and G. Mills,J. Phys. Chem., 1994,98, 9840CrossRefGoogle Scholar

Copyright information

© World Gold Council 2004

Authors and Affiliations

  • Shouan Dong
    • 1
  • Chun Tang
    • 1
  • Hua Zhou
    • 1
  • Huaizhi Zhao
    • 1
  1. 1.Institute of Precious MetalsKunmingChina

Personalised recommendations