Journal of Applied Genetics

, Volume 51, Issue 4, pp 421–429

QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.)

  • P. Ramya
  • A. Chaubal
  • K. Kulkarni
  • L. Gupta
  • N. Kadoo
  • H. S. Dhaliwal
  • P. Chhuneja
  • M. Lagu
  • V. Gupt
Original article

Abstract

Kernel size and morphology influence the market value and milling yield of bread wheat (Triticum aestivum L.). The objective of this study was to identify quantitative trait loci (QTLs) controlling kernel traits in hexaploid wheat. We recorded 1000-kernel weight, kernel length, and kernel width for 185 recombinant inbred lines from the cross Rye Selection 111 × Chinese Spring grown in 2 agro-climatic regions in India for many years. Composite interval mapping (CIM) was employed for QTL detection using a linkage map with 169 simple sequence repeat (SSR) markers. For 1000-kernel weight, 10 QTLs were identified on wheat chromosomes 1A, 1D, 2B, 2D, 4B, 5B, and 6B, whereas 6 QTLs for kernel length were detected on 1A, 2B, 2D, 5A, 5B and 5D. Chromosomes 1D, 2B, 2D, 4B, 5B and 5D had 9 QTLs for kernel width. Chromosomal regions with QTLs detected consistently for multiple year-location combinations were identified for each trait. Pleiotropic QTLs were found on chromosomes 2B, 2D, 4B, and 5B. The identified genomic regions controlling wheat kernel size and shape can be targeted during further studies for their genetic dissection.

Keywords

composite interval mapping kernel shape kernel size quantitative trait loci stable QTLs Triticum aestivum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammiraju JSS, Dholakia BB, Santra DK, Singh H, Lagu MD, Tamhankar SA et al. 2001. Identification of inter simple sequence repeat (ISSR) markers associated with seed size in wheat. Theor Appl Genet 102: 726–732.CrossRefGoogle Scholar
  2. Ammiraju JSS, Dholakia BB, Jawdekar G, Santra DK, Singh H, Lagu MD, et al. 2002. Inheritance and identification of DNA markers associated with yellow berry tolerance in wheat (T. aestivum L.). Euphytica 123: 229–233.CrossRefGoogle Scholar
  3. Ammiraju JSS, Dholakia BB, Jawdekar G, Santra DK, Röder MS, Singh H, et al. 2004. Identification of chromosomal regions governing grain size and shape in wheat (Triticum aestivum L.). J Genet & Breed 58: 91–100.Google Scholar
  4. Ayoub M, Symons SJ, Edney MJ, Mather DE, 2002. QTLs affecting kernel size and shape in a two-rowed by six-rowed barley cross. Theor Appl Genet 105:237–247.PubMedCrossRefGoogle Scholar
  5. Baker S, Herrman TJ, Loughin T, 1999. Segregating hard red winter wheat into dough factor groups using single kernel measurements and whole grain protein analysis. Cereal Chem 76, 884–889.CrossRefGoogle Scholar
  6. Baril CP, 1992. Factor regression for interpreting genotype-environment interaction in bread-wheat trials. Theor Appl Genet 83: 1022–1026.CrossRefGoogle Scholar
  7. Berman M, Bason ML, Ellison R, Peden G, Wrigley CW, 1996. Image analysis of the whole grains to screen for flour-milling yield in wheat breeding. Cereal Chem 73: 323–327.Google Scholar
  8. Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS, Weber WE, 2002. Mapping of quantitative trait loci for agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105: 921–936.PubMedCrossRefGoogle Scholar
  9. Breseghello F, Sorrells ME, 2006. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 177: 1165–1177.Google Scholar
  10. Breseghello F, Sorrells ME, 2007. QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crop Res 101: 172–179.CrossRefGoogle Scholar
  11. Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, et al. 1999. Quantitative trait loci associated with kernel traits in soft × hard wheat cross. Crop Sci 39: 1184–1195.CrossRefGoogle Scholar
  12. Churchill GA, Doerge RW, 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.PubMedGoogle Scholar
  13. Dholakia BB, Ammiraju JSS, Singh H, Lagu MD, Röder MS, Rao VS et al. 2003. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breeding 122: 392–395.CrossRefGoogle Scholar
  14. Doerge RW, Churchill GA, 1996. Permutation tests for multiple loci affecting a quantitative character. Genetics 142: 285–294.PubMedGoogle Scholar
  15. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q, 2006.Gs3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112: 1164–1171.PubMedCrossRefGoogle Scholar
  16. Giura A, Saulescu NN, 1996. Chromosomal location of genes controlling grain size in a large grained selection of wheat (Triticum aestivum L.). Euphytica 89: 77–80.CrossRefGoogle Scholar
  17. Groh S, Kianian SF, Philips RL, Rines HW, Stuthman DD, Wesenberg DM, Fulcher RG, 2001. Analysis of factors influencing milling yield and their association to other traits by QTL analysis in two hexaploid oat populations. Theor Appl Genet 103:9–18.CrossRefGoogle Scholar
  18. Groos C, Robert N, Bervas E, Charmet G, 2003. Genetic analysis of grain protein content, grain yield and thousand-kernel weight in bread wheat. Theor Appl Genet 106: 1032–1040.PubMedGoogle Scholar
  19. Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, et al. 2006. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113: 753–766.PubMedCrossRefGoogle Scholar
  20. Jiang C, Zeng Z-B, 1995. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140: 1111–1127PubMedGoogle Scholar
  21. Kosambi DD, 1944. The estimation of map distances from recombination values. Ann Eugen 12: 172–175.Google Scholar
  22. Kumar N, Kulwal PL, Gaur A, Tyagi AK, Khurana JP, Khurana P, et al. 2006. QTL analysis for grain weight in common wheat. Euphytica 151: 135–144.CrossRefGoogle Scholar
  23. Marshall DR, Mares DJ, Moss HJ, Ellison FW, 1986. Effects of grain shape and size on milling yields in wheat. II. Experimental studies. Aust J Agr Res 37:331–342.CrossRefGoogle Scholar
  24. McIntosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R, 2003. Catalog of gene symbols for wheat. Tenth International Wheat Genetics Symposium, Paestum, Italy, 1–6 September 2003.Google Scholar
  25. Morgan BC, Dexter JE, Preston KR, 2000. Relationship of kernel size to flour water absorption for Canada Western Red Spring Wheat. Cereal Chem 77, 286–292.CrossRefGoogle Scholar
  26. Novaro P, Colucci F, Venora G, D’Egidio MG, 2001. Image analysis of whole grains: A noninvasive method to predictsemolina yield in durum wheat. Cereal Chem 78: 217–221.CrossRefGoogle Scholar
  27. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW, 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.PubMedGoogle Scholar
  28. Röder MS, Huang XQ, Börner A, 2008. Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genomics 8: 79–86.PubMedCrossRefGoogle Scholar
  29. Sanguinetti CJ, Dias Neto E, Simpson AJG, 1994. Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17: 915–919.Google Scholar
  30. Somers DJ, Isaac P, Edwards K, 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109: 1105–1114.PubMedCrossRefGoogle Scholar
  31. Song J-X, Huang W, Shi M, Zhu Z-M, Lin X-H, 2007. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genet 39: 623–630PubMedCrossRefGoogle Scholar
  32. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L et al. 2004. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4: 12–25PubMedCrossRefGoogle Scholar
  33. Stein N, Herren G, Keller B, 2001. A new DNA extraction method for high-throughput marker analysis in a large-genome species such asTriticum aestivum. Plant Breeding 120: 354–356.CrossRefGoogle Scholar
  34. VanOoijen JW, 2006. JoinMap®4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands.Google Scholar
  35. Varshney RK, Prasad M, Roy JK, Kumar N, Singh H, Dhaliwal HS, et al. 2000. Identification of eight chromosomes and a microsatellite marker on1 AS associated with QTLs for grain weight in bread wheat. Theor Appl Genet 100: 1290–1294.CrossRefGoogle Scholar
  36. Voorrips, RE, 2002. MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93: 77–78.PubMedCrossRefGoogle Scholar
  37. Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH, 2009. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118: 313–325.PubMedCrossRefGoogle Scholar
  38. Wang S, Basten CJ, Zeng ZB, 2007. WindowsQTLCartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm).Google Scholar
  39. Wiersma JJ, Busch RH, Fulcher GG, Hareland G, 2001. Recurrent selection for kernel weight in spring wheat. Crop Sci 41: 999–1005.CrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2010

Authors and Affiliations

  • P. Ramya
    • 3
  • A. Chaubal
    • 3
  • K. Kulkarni
    • 3
  • L. Gupta
    • 3
  • N. Kadoo
    • 3
  • H. S. Dhaliwal
    • 1
    • 2
  • P. Chhuneja
    • 2
  • M. Lagu
    • 3
  • V. Gupt
    • 3
  1. 1.Department of Biotechnology, Indian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.School of Agricultural Biotechnology, College of AgriculturePunjab Agricultural UniversityLudhianaIndia
  3. 3.Scientist ‘G’, Plant Molecular Biology Group, Division of Biochemical SciencesNational Chemical LaboratoryPuneIndia

Personalised recommendations