Journal of Applied Genetics

, Volume 51, Issue 2, pp 225–232 | Cite as

Agrobacterium rhizogenes-mediated transformation of a high oil-producing fil a m en to us fungusUmbelopsis isabellina

  • D. Sh. Wei
  • Y. H. Zhang
  • L. J. Xing
  • M. Ch. Li
Original Article

Abstract

TheAgrobacterium rhizogenes-mediated transformation procedure was developed by using the hygromycin B phosphotransferase gene (hph) as a selective marker for the oil-producing fungusUmbelopsis isabellina. Different conditions were combined to increase the transformation efficiency. The highest efficiency was obtained by usingA. rhizogenes strain R105 and a vector with zygomycete promoter. Southern blot analysis demonstrated that 71 % of transformants contained random integrations of T-DNA sequences under optimal conditions. We randomly selected 115 positive transformants resistant to hygromycin to analyze the amount of total fatty acid and gamma-linolenic acid (GLA). Six transformants produced a higher amount of total fatty acids than the wild strain, and one transformant also produced a higher level of GLA than the wild strain in gas chromatography analysis. This is the first report about usingA. rhizogenes strain R105 and germinated conidia to transform successfully the recalcitrant zygomycetes and to obtain transformants with a stable phenotype.

Keywords

Agrobacterium rhizogenes-mediated transformation conidia Umbelopsis isabellina zygomycetes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando A, Sumida Y, Negoro H, Suroto DA, Ogawa J, Sakuradani E, Shimizu S, 2009. Establishment ofAgrobacterium tumefaciens-mediated transformation of an oleaginous fungus Mortierella alpina 1S-4 and its application for eicosapentaenoic acid-producer breeding. Appl Environ Microbiol (in press), Doi: 10.1128/AEM.00648-09.Google Scholar
  2. Bundock P, Dulk-Ras A, Beij ersbergen A, Hooykaas P J, 1995. Trans-kingdom T-DNA transfer fromAgrobacterium tumefaciens toSaccharomyces cerevisiae. EMBO J 14: 3206–3214.PubMedGoogle Scholar
  3. Combier JP, Melayah D, Raffier C, Gay G, Marmeisse R, 2003.Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungusHebeloma cylindrosporum. FEMS Microbiol Lett 220: 141–148.CrossRefPubMedGoogle Scholar
  4. Czapek F, 1902. Untersuchungen über die Stickstoffgewinnung und Eiweißbildung der Pflanzen. Beitr Chem Physiol u Pahtol 1: 540–560.Google Scholar
  5. De Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM, 1998.Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16: 839–842.CrossRefPubMedGoogle Scholar
  6. Dox AW, 1910. The intracellular enzymes ofPenicillium and Aspergillus with special references to those ofP. camenberti. US Dept Agr Bur Anim Ind Bull 120: 170.Google Scholar
  7. Fang G, Hammar S, Grumet R, 1992. A quick and inexpensive method for removing polysaccharides from plant genomic DNA. BioTechniques 13: 52–57.PubMedGoogle Scholar
  8. Fang W-G, Zhang Y-J, Yang X-Y, Zheng X-L, Duan H, Li Y, Pei Y, 2004.Agrobacterium tumefaciens-mediated transformation ofBeauveria bassiana using an herbicide resistance gene as a selection marker. J Invertebr Pathol 85: 18–24.CrossRefPubMedGoogle Scholar
  9. Gardiner DM, Jarvis RS. Howlett BJ, 2005. The ABC transporter gene in the sirodesmin biosynthetic gene cluster ofLeptosphaeria maculans is not essential for sirodesmin production but facilitates self-protection. Fungal Genet Biol 42: 257–263.CrossRefPubMedGoogle Scholar
  10. Gill I, Valivety R, 1997. Polyunsaturated fatty acids, part 1: Occurrence, biological activities and application. Trends Biotechnol 15: 401–409.CrossRefPubMedGoogle Scholar
  11. Hoekema A, Hirsch PR, Hooyka PK, Schilperoort RA, 1983. A binary plant vector strategy based on separation of vir- and T-region of theAgrobacterium tumefaciens Ti-plasmid. Nature 303: 179–180.CrossRefGoogle Scholar
  12. Hood EE, Gelvin SB, Melchers LS, Hoekema A, 1993. NewAgrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2: 208–218.CrossRefGoogle Scholar
  13. Horrobin DF, 1992. Nutritional and medical importance of gamma-linolenic acid. Prog Lipid Res 31: 163–194.CrossRefPubMedGoogle Scholar
  14. Leclerque A, Wan H, Abschütz A, Chen S, Mitina GV, Zimmermann G, Schairer HU, 2004.Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungusBeauveria bassiana. Curr Genet 45: 111–119.CrossRefPubMedGoogle Scholar
  15. Li W, Guo G-Q, Zheng G-Ch, 2000. Agrobacterium-mediated transformation: state of the art and future prospect. Chin. Science Bull 45: 1537–1546.CrossRefGoogle Scholar
  16. Mackenzie DA, Wongwathanarat P, Carter AT, Archer DB, 2000. Isolation and use of a homologous histone H4 promoter and a ribosomal DNA region in a transformation vector for the oil-producing fungusMortierella alpina. Appl Environ Microbiol 66: 4655–4661.CrossRefPubMedGoogle Scholar
  17. Meyer V, Mueller D, Strowig T, Stahl U, 2003. Comparison of different transformation methods forAspergillus giganteus. Curr Genet 43: 371–377.CrossRefPubMedGoogle Scholar
  18. Miao X-L, Wu Q-Y, 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97: 841–846.CrossRefPubMedGoogle Scholar
  19. Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, Ram AFJ, 2005.Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48: 1–17.CrossRefPubMedGoogle Scholar
  20. Michielse CB, Salim K, Ragas P, Ram AFJ, Kudla B, Jarry B, et al. 2004. Development of a system for integrative and stable transformation of the zygomyceteRhizopus oryzae byAgrobacterium-mediated DNA transfer. Mol Genet Genomics 271: 499–510.CrossRefPubMedGoogle Scholar
  21. Monfort A, Cordero L, Maicas S, Polaina J, 2003. Transformation ofMucor miehei results in plasmid deletion and phenotypic instability. FEMS Microbiol Lett 224: 101–106.CrossRefPubMedGoogle Scholar
  22. Mullaney EJ, Hamer JE, Roberti KA, Yelton MM, Timberlake WE, 1985. Primary structure of the trpC gene fromAspergillus nidulans. Mol Gen Genet 199: 37–45.CrossRefPubMedGoogle Scholar
  23. Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S, 2001.Agrobacterium-mediated transformation ofFusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91: 173–180.CrossRefPubMedGoogle Scholar
  24. Mullins ED, Kang S, 2001. Transformation: a tool for studying fungal pathogens of plants. Cell Mol Life Sci 58: 2043–2052.CrossRefPubMedGoogle Scholar
  25. Nyilasi I, Papp T, Csernetics Á, Vágvölgyi C, 2008.Agrobacterium tumefaciens-mediated transformation of the zygomycete fungusBackusella lamprospora. J Basic Microbiol 48: 59–64.CrossRefPubMedGoogle Scholar
  26. Pahl G, McKibben B, 2005. Biodiesel: growing a new energy economy. White River Junction, Vermont: Chelsea Green.Google Scholar
  27. Papanikolaou S, Sarantou S, Komaitis M, 2004. Repression of reserve lipid turnover inCunninghamella echinulata andMortierella isabellina cultivated in multiple limited media. J Appl Microbiol 97: 867–75.CrossRefPubMedGoogle Scholar
  28. Rho H, Kang S, Lee Y, 2001.Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungusMagnaporthe grisea. Mol cells 12: 407–411.PubMedGoogle Scholar
  29. Stafford HA, 2000. Crown gall disease andAgrobacterium tumefaciens: a study of the history, present knowledge, missing information and impact on molecular genetics. Bot Rev 66: 101–118.CrossRefGoogle Scholar
  30. Sugui JA, Chang YC, Kwon-Chung KJ, 2005.Agrobacterium tumefaciens-mediated transformation ofAspergillus fumigatus: an efficient tool for insertional mutagenesis and targeted gene disruption. Appl Environ Microbiol 71: 1798–1802.CrossRefPubMedGoogle Scholar
  31. Takahara H, Tsuji G, Kubo Y, Yamamoto M, Toyoda K, Inagaki Y, et al. 2004.Agrobacterium tumefaciens-mediated transformation as a tool for random mutagenesis of Colletotrichum trifolii. J Gen Plant Pathol 70: 93–96.CrossRefGoogle Scholar
  32. Yang X-H, Sun Zh-H, Tong R-J, 2006. Optimizing culture system of Ri T-DNA transformed roots forCitrus grandis cv. Changshou Shatian You. Agric Sci China 5: 90–97.Google Scholar
  33. Yan Z, Chen J, 2003. Research advance on microbial oils and their exploitation and utilization. Journal of Cereals & Oils 7: 13–15.Google Scholar
  34. Zhang P-Y, Xu B, Wang Y-Zh, Li Y-Q, Qian Zh, Tang Sh-R, et al. 2008a.Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the fungusPenicillium marneffei. Mycol Res 112: 943–949.CrossRefPubMedGoogle Scholar
  35. Zhang X-W, Li M-Ch, Wei D-Sh, Wang X-M, Chen X, Xing L-J, 2007. Disruption of the fatty acid delta6-desaturase gene in the oil-producing fungusMortierella isabellina by homologous recombination. Curr Microbiol 55: 128–134.CrossRefPubMedGoogle Scholar
  36. Zhang Y-H, Wei D-Sh, Xing L-J, Li M-Ch, 2008b. A modified method for isolating DNA from fungus. Microbiology 35: 466–469 (In Chinese).Google Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2010

Authors and Affiliations

  • D. Sh. Wei
    • 1
  • Y. H. Zhang
    • 1
  • L. J. Xing
    • 1
  • M. Ch. Li
    • 1
  1. 1.Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of MicrobiologyNankai UniversityTianjinPR China

Personalised recommendations