Journal of Applied Genetics

, Volume 51, Issue 2, pp 153–168 | Cite as

Genetics of fat tissue accumulation in pigs: a comparative approach

  • M. Switonski
  • M. Stachowiak
  • J. Cieslak
  • M. Bartz
  • M. Grzes
Review Article


Fatness traits are important in pig production since they influence meat quality and fattening efficiency. On the other hand, excessive fat accumulation in humans has become a serious health problem due to worldwide spread of obesity. Since the pig is also considered as an animal model for numerous human diseases, including obesity and metabolic syndrome, comparative genomic studies may bring new insights into genetics of fatness/obesity. Input of genetic factors into phenotypic variability of these traits is rather high and the heritability coefficient (h 2) of these traits oscillates around 0.5. Genome scanning revealed the presence of more than 500 QTLs for fatness in the pig genome. In addition to QTL studies, many candidate gene polymorphisms have been analyzed in terms of their associations with pig fatness, including genes encoding leptin (LEP) and its receptor (LEPR), insulin-like growth factor 2 (IGF-2), fatty acid-binding proteins (FABP3 andFABP4), melanocortin receptor type 4 (MC4R), and theFTO (fat mass and obesity-associated) gene. Among them, a confirmed effect on pig fatness was found for a well-known polymorphism of theIGF-2 gene. In humans the strongest association with predisposition to obesity was shown for polymorphism of theFTO gene, while in pigs such an association seems to be doubtful. The development of functional genomics has revealed a large number of genes whose expression is associated with fat accumulation and lipid metabolism, so far not studied extensively in terms of the association of their polymorphism with pig fatness. Recently, epigenomic mechanisms, mainly RNA interference, have been considered as a potential source of information on genetic input into the fat accumulation process. The rather limited progress in studies focused on the identification of gene polymorphism related with fatness traits shows that their genetic background is highly complex.


candidate genes epigenomics fatness genomics human mouse obesity pig QTL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksu S, Koczan D, Renne U, Thiesen HJ, Brockmann GA, 2007. Differentially expressed genes in adipose tissues ofhigh body weight-selected (obese) and unselected (lean) mouse lines. J Appl Genet 48: 133–143.PubMedCrossRefGoogle Scholar
  2. Andersson L, Haley CS, Ellegren H, Knott SA, Johansson M, Andersson K, et al. 1994. Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263: 1771–1774.PubMedCrossRefGoogle Scholar
  3. Berg F, Stern S, Andersson K, Andersson L, Moller M, 2006. Refined localization of theFAT1 quantitative trait locus on pig chromosome 4 by marker-assisted backcrossing. BMC Genetics 7: 17.PubMedCrossRefGoogle Scholar
  4. Berghöfer A, Pischon T, Reinhold T, Apovian CM, Sharma AM, Willich SN, 2008. Obesity prevalence from a European perspective: a systematic review. BMC Public Health 5; 8: 200.CrossRefGoogle Scholar
  5. Bolze F, Klingenspor M, 2009. Mouse models for the central melanocortin system. Genes Nutr 4: 129–134.PubMedCrossRefGoogle Scholar
  6. Brambilla G, Cantafora A, 2004. Metabolic and cardiovascular disorders in highly inbred lines for intensive pig farming: how animal welfare evaluation could improve the basic knowledge of human obesity. Ann Ist Super Sanita 40: 241–244.PubMedGoogle Scholar
  7. Brockmann GA, Bevova MR, 2002. Using mouse models to dissectthe genetics of obesity. Trends Genet 18: 367–376.PubMedCrossRefGoogle Scholar
  8. Brown AC, Olver WI, Donnelly CJ, May ME, Naggert JK, Shaffer DJ, Roopenian DC, 2005. Searching QTL by gene expression: analysis of diabesity. BMC Genet 6: 12.PubMedCrossRefGoogle Scholar
  9. Challis BG, Luan J, Keogh J, Wareham NJ, Farooqi IS, O’Rahilly S, 2004. Genetic variation in the corticotrophin-releasing factor receptors: identification of single-nucleotide polymorphisms and association studies with obesity in UK Caucasians. Int J Obes Relat Metab Disord 28: 442–446.PubMedCrossRefGoogle Scholar
  10. Challis BG, Pritchard LE, Creemers JW, Delplanque J, Keogh JM, Luan J, et. al. 2002. A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum Mol Genet 11: 1997–2004.PubMedCrossRefGoogle Scholar
  11. Chen P, Baas TJ, Mabry JW, Dekkers JC, Koehler KJ, 2002. Genetic parameters and trends for lean growth rate and its components in U.S. Yorkshire, Duroc, Hampshire, and Landrace pigs. J Anim Sci 80: 2062–2070.PubMedGoogle Scholar
  12. Chen R, Ren J, Li W, Huang X, Yan X, Yang B, et al. 2009. A genome-wide scan for quantitative trait loci affecting serum glucose and lipids in a White Duroc x Erhualian intercross F(2) population. Mamm Genome 20: 386–392.PubMedCrossRefGoogle Scholar
  13. Chmurzynska A, Cieslak J, Jankowski T, Szydlowski M, Switonski M, 2008. Identification of target sequences for association studies — analysis of the pig FABP3 and FABP4 loci using comparative genomics methods. J Anim Feed Sci 17: 191–201.Google Scholar
  14. Chmurzynska A, Mackowski M, Szydlowski M, Melonek J, Kamyczek M, Eckert R, et al. 2004. Polymorphism of intronic microsatellites in theA-FABP andLEPR genes and its association with productive traits in the pig. J Anim Feed Sci 13: 615–624.Google Scholar
  15. Chmurzynska A, Szydlowski M, Stachowiak M, Stankiewicz M, Switonski M, 2007. Association of a new SNP in promoter region of the porcine FABP3 gene with fatness traits in a Polish synthetic line. Anim Biotechnol 18: 37–44.PubMedCrossRefGoogle Scholar
  16. Cieslak J, Nowacka-Woszuk J, Bartz M, Fijak-Nowak H, Grzes M, Szydlowski M, Switonski M, 2009. Association studies on the porcineRETN, UCP1, UCP3 andADRB3 genes polymorphism with fatness traits. Meat Sci 83: 551–554.CrossRefGoogle Scholar
  17. Clément K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, et al. 1998. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392: 398–401.PubMedCrossRefGoogle Scholar
  18. Clop A, Óvilo C, Pérez-Enciso M, Cercos A, Tomas A, Fernandez A, et al. 2003. Detection of QTL affecting fatty acid composition in the pig. Mamm Genome 14: 650–656.PubMedCrossRefGoogle Scholar
  19. Clutter AC, Brascamp EW, 1998. Genetics of performance traits. In: Rothschild MF, Ruvinsky A. ed., The genetics of pigs, pp. 427–462. New York: CAB International.Google Scholar
  20. Daza A, López-Bote C, Rey A, Olivares A, 2006. Effect of age at the beginning of the free-range fattening period on growth and carcass and fat quality in Iberian pigs. Arch Anim Nutr 60: 317–324.PubMedCrossRefGoogle Scholar
  21. Demars J, Riguet J, Feve K, Gautier M, Morisson M, Demeure O, et al. 2006. High-resolution physical map of porcine chromosome 7 QTL region and comparative mapping of this region among vertebrate genomes. BMC Genomics 7: 13.PubMedCrossRefGoogle Scholar
  22. Dyson M, Alloosh M, Vuchetich JP, Mokelke EA, Sturek M, 2006. Components of metabolic syndrome and coronary artery disease in female Ossabaw swine fed excess atherogenic diet. Comp Med 56: 35–45.PubMedGoogle Scholar
  23. Estany J, Tor M, Villalba D, Bosch L, Gallardo D, Jiménez N, et al. 2007. Association of CA repeat polymorphism at intron 1 of insulin-like growth factor (IGF-I) gene with circulating IGF-I concentration, growth, and fatness in swine. Physiol Genomics 31: 236–243.PubMedCrossRefGoogle Scholar
  24. Estellé J, Mercadé A, Noguera J, Pérez-Enciso M, Óvilo C, Sánchez A, Folch J, 2005. Effect of the porcine IGF2-intron3-G3072A substitution in an outbred Large White population and in Iberian x Landrace cross. J Anim Sci 83: 2723–2728.PubMedGoogle Scholar
  25. Estellé J, Pérez-Enciso M, Mercadé A, Varona L, Alves E, Sánchez A, Folch J, 2006. Characterization of the porcineFABP5 gene and its association with theFA T1 QTL in an Iberian by Landrace cross. Anim Genet 37: 589–591.PubMedCrossRefGoogle Scholar
  26. Fadista J, Nygaard M, Holm LE, Thomsen B, Bendixen C, 2008. A snapshot of CNVs in the pig genome. PLoS One 3: e3916.PubMedCrossRefGoogle Scholar
  27. Faivre L, Cormier-Daire V, Lapierre JM, Colleaux L, Jacquemont S, Geneviéve D, et al. 2002. Deletion of theSIM1 gene (6q16.2) in a patient with a Prader-Willi-like phenotype. J Med Genet 39: 594–596.PubMedCrossRefGoogle Scholar
  28. Fan B, Du ZQ, Rothschild MF, 2009a. The fat mass and obesity-associated (FTO) gene is associated with intramuscular fat content and growth rate in the pig. Anim Biotechnol 20: 58–70.PubMedCrossRefGoogle Scholar
  29. Fan B, Onteru SK, Nikkilä MT, Stalder KJ, Rothschild MF, 2009b. Identification of genetic markers associated with fatness and leg weakness traits in the pig. Anim Genet 40: 967–970.PubMedCrossRefGoogle Scholar
  30. Fan B, Onteru SK, Plastow GS, Rothschild MF, 2009c. Detailed characterization of the porcineMC4R gene in relation to fatness and growth. Anim Genet 40: 401–409.PubMedCrossRefGoogle Scholar
  31. Fernandez A, de Pedro E, Nunez N, Silio L, Garcia-Casco J, Rodriguez C, 2003. Genetic parameters for meat and fat quality and carcass composition traits in Iberian pigs. Meat Sci 64: 405–410.CrossRefGoogle Scholar
  32. Fernandez X, Monin G, Talmant A, Mourot J, Lebret B, 1999. Influence of intramuscular fat content on the quality of pig meat. 2. Consumer acceptability ofm. longissimus lumborum. Meat Sci 53: 67–72.CrossRefGoogle Scholar
  33. Feuk L, Marshall CR, Wintle RF, Scherer SW, 2006. Structural variants: changing the landscape of chromosomes and design of disease studies. Hum Mol Genet 15 (Spec No 1): 57–66.CrossRefGoogle Scholar
  34. Fischer K, 1994. Zur Topographie des intramuskulären Fettgehaltes bei Rind und Schwein. Mitteilungsblatt der Bundesanstalt für Fleischforschung, Kulmbach 33: 112–120.Google Scholar
  35. Fischer K, 2005. Consumer-relevant aspects of pork quality. Anim Sci Pap Rep 23: 269–280.Google Scholar
  36. Fischer K, Lindner JP, Judas M, Hoereth R, 2006. Schlacht-korperzusammensetzung und Gewebebeschaffenheit von schweren Schweinen. II Mitteilung: Merkmale der Fleisch- und Fettqualität. Arch Tierz Dummerstorf 49: 279–292.Google Scholar
  37. Florowski T, Pisula A, Adamczak L, Buczynski JT, Orzechowska B, 2006a. Technological parameters of meat in pigs of two Polish local breeds — Zlotnicka Spotted and Pulawska. Anim Sci Pap Rep 24: 217–224.Google Scholar
  38. Florowski T, Pisula A, Słowiński M, Orzechowska B, 2006b. Processing suitability of pork from different breeds reared in Poland. Acta Sci Pol Technol Aliment 5: 55–64.Google Scholar
  39. Fontanesi L, Scotti E, Buttazzoni L, Dall’Olio S, Davoli R, Russo V, 2010. A single nucleotide polymorphism in the porcine cathepsin K (CTSK) gene is associated with back fat thickness and production traits in Italian Duroc pigs. Mol Biol Rep 37: 491–495.PubMedCrossRefGoogle Scholar
  40. Fontanesi L, Scotti E, Buttazzoni L, Davoli R, Russo V, 2008. The porcine fat mass and obesity associated (FTO) gene is associated with fat deposition in Italian Duroc pigs. Anim Genet 40: 90–93.PubMedCrossRefGoogle Scholar
  41. Fortin A, Robertson WM, Tong AKW, 2005. The eating quality of Canadian pork and its relationship with intramuscular fat. Meat Sci 69: 297–305.CrossRefGoogle Scholar
  42. Gallardo D, Pena RN, Amills M, Varona L, Ramírez O, Reixach J, et al. 2008. Mapping of quantitative trait loci for cholesterol, LDL, HDL, and triglyceride serum concentrations in pigs. Physiol Genomics 35: 199–209.PubMedCrossRefGoogle Scholar
  43. Gallardo D, Quintanilla R, Varona L, Díaz I, Ramírez O, Pena R, Amills M, 2009. Polymorphisms of the pig acetyl-coenzyme A carboxylase alpha gene is associated with fatty acid composition in a Duroc commercial line. Anim Genet 40: 410–417.PubMedCrossRefGoogle Scholar
  44. Gerbens F, Jansen A, van Erp AJ, Harders F, Meuwissen TH, Rettenberger G, et al. 1998. The adipocyte fatty acid-binding protein locus:characterization and association with intramuscular fat content in pigs. Mamm Genome 9: 1022–1026.PubMedCrossRefGoogle Scholar
  45. Gerbens F, van Erp AJ, Harders FL, Verburg FJ, Meuwissen TH, Veerkamp JH, te Pas MF, 1999. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J Anim Sci 77: 846–852.PubMedGoogle Scholar
  46. Gibson WT, Pissios P, Trombly DJ, Luan J, Keogh J, Wareham NJ, et al. 2004. Melanin-concentrating hormone receptor mutations and human obesity: functional analysis. Obes Res 12: 743–749.PubMedCrossRefGoogle Scholar
  47. Gilbert H, Bidanel J-P, Gruand J, Caritez J-C, Billon Y, Guillouet P, et al. 2007. Genetic parameters for residual feed intake in growing pigs, with emphasis on genetic relationships with carcass and meat quality traits. J Anim Sci 85: 3182–3188.PubMedCrossRefGoogle Scholar
  48. Gonzalez-Añover P, Encinas T, Gomez-Izquierdo E, Sanz E, Letelier C, Torres-Rovira L, et al. 2010 (in press). Advanced onset of puberty in gilts ofthrifty genotype (Iberian Pig). Reprod Domest Anim DOI:10.1111/j.1439-0531.2009.01476.x.Google Scholar
  49. Gotz K-U, Peschke W, Schuster M, 2001. Genusswert: Neue Merkmale für die Zucht? Vortrag zum 5. Schweineworkshop am 20./21. Februar 2001 in Uel-zen.DGFZ Schriftenreihe 5: 75–84.Google Scholar
  50. Grześkowiak E, Borzuta K, Strzelecki J, Lisiak D, 2006. Results of assessment of meat quality in fat-meat type pigs currently fattened on small farms. Anim Sci Pap Rep 24: 113–118.Google Scholar
  51. Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T, et al. 2006. A common genetic variant is associated with adult and childhood obesity. Science 312: 279–283.PubMedCrossRefGoogle Scholar
  52. Hermesch S, Luxford BG, Graser HU, 2000. Genetic parameters for lean meat yield, meat quality, reproduction and feet efficiency traits for Australian pigs 1. Description of traits and heritability estimates. Livest Prod Sci 65: 239–248.CrossRefGoogle Scholar
  53. Hinney A, Vogel CI, Hebebrand J, 2010. From monogenic to polygenic obesity: recent advances. Eur Child Adolesc Psychiatry 19: 297–310.PubMedCrossRefGoogle Scholar
  54. Holder JL Jr, Butte NF, Zinn AR, 2000. Profound obesity associated with a balanced translocation that disrupts theSIM1 gene. Hum Mol Genet 9: 101–108.PubMedCrossRefGoogle Scholar
  55. Hollo G, 2004. The fatty acid composition of meat from historical animal breeds and its evaluation from human nutrition point of view. Food, Nutr Market 1–2.Google Scholar
  56. Hovenier R, Kanis E, van Asseldonk T, Westerink NG, 1992. Genetic parameters of pig meat quality traits in a halothane negative population. Livest Prod Sci 32: 309–321.CrossRefGoogle Scholar
  57. Huang T-H, Zhu M-J, Li X-Y, Zhao S-H, 2008. Discovery of porcine microRNAs and profiling from skeletal muscle tissues during development. PLoS One 3: e3225.PubMedCrossRefGoogle Scholar
  58. Ibeagha-Awemu E, Kgwatalala P, Zhao X, 2008. A critical analysis of production-associated DNA polymorphisms in the genes of cattle, goat, sheep and pig. Mamm Genome 19: 591–617.PubMedCrossRefGoogle Scholar
  59. Jackson RS, Creemers JW, Farooqi IS, Raffin-Sanson ML, Varro A, Dockray GJ, et al. 2003. Small-intestinal dysfunction accompanies the complex endocrinopathy of human proprotein convertase 1 deficiency. J Clin Invest 112: 1550–1560.PubMedGoogle Scholar
  60. Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, et al. 1997. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 16: 303–306.PubMedCrossRefGoogle Scholar
  61. Jiang ZH, Gibson JP, 1999. Genetic polymorphisms in the leptin gene and their association with fatness in four pig breeds. Mamm Genome 10: 191–193.PubMedCrossRefGoogle Scholar
  62. Jokubka R, Maak S, Kerziene S, Swalve H, 2006. Association of a melanocortin 4 receptor (MC4R) polymorphism with performance traits in Lithuanian White pigs. J Anim Breed Genet 123: 17–22.PubMedCrossRefGoogle Scholar
  63. Joy T, Hegele RA, 2008. Genetics of metabolic syndrome: is there a role for phenomics? Curr Atheroscler Rep 10: 201–208.PubMedCrossRefGoogle Scholar
  64. Kajimoto K, Naraba H, Iwai N, 2006. MicroRNA and 3T3-L1 preadipocyte differentiation. RNA 12: 1626–1632.PubMedCrossRefGoogle Scholar
  65. Kennes YM, Murphy BD, Pothier F, Palin MF, 2001. Characterization of swine leptin (LEP) polymorphisms and their association with production traits. Anim Genet 32: 215–218.PubMedCrossRefGoogle Scholar
  66. Kim J, Cho IS, Hong JS, Choi YK, Kim H, Lee YS, 2008. Identification and characterization of new microRNAs from pig. Mamm Genome 19: 570–580.PubMedCrossRefGoogle Scholar
  67. Kim K, Larsen N, Short T, Plastow G, Rothschild M, 2000. A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth and feed intake traits. Mamm Genome 11: 131–135.PubMedCrossRefGoogle Scholar
  68. Klöting N, Berthold S, Kovacs P, Schön MR, Fasshauer M, Ruschke K, et al. 2009. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE 4: e4699.PubMedCrossRefGoogle Scholar
  69. Knapp PA, Willam A, Solkner J, 1997. Genetic parameters for lean meat content and meat quality traits in different pig breeds. Livest Prod Sci 52: 69–73.CrossRefGoogle Scholar
  70. Kolaríková O, Putnová L, Urban T, Adámek J, Knoll A, Dvorák J, 2003. Associations of theIGF2 gene with growth and meat efficiency in Large White pigs. J Appl Genet 44: 509–513.PubMedGoogle Scholar
  71. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Grüters A, 1998. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19: 155–157.PubMedCrossRefGoogle Scholar
  72. Kuhlers DL, Nadarajah K, Jungst SB, Anderson BL, 2001. Genetic selection for real-time ultrasound loin eye area in a closed line of Landrace pig. Livest Prod Sci 72: 225–231.CrossRefGoogle Scholar
  73. Lan J, Lei MG, Zhang YB, Wang JH, Feng XT, Xu DQ, et al. 2009. Characterization of the porcine differentially expressed PDK4 gene and association with meat quality. Mol Biol Rep 36: 2003–2010.PubMedCrossRefGoogle Scholar
  74. Landi D, Gemignani F, Barale R, Landi S, 2008. A catalog of polymorphisms falling in microRNA-binding regions of cancer genes. DNA Cell Biol 27: 35–43.PubMedCrossRefGoogle Scholar
  75. Larzul C, Lefaucheur L, Ecolan P, Gogué J, Talmant A, Sellier P, et al. 1997. Phenotypic and genetic parameters for longissimus muscle fiber characteristics in relation to growth, carcass, and meat quality traits in large white pigs. J Anim Sci 75: 3126–3137.PubMedGoogle Scholar
  76. Laube S, Henning M, Brandt H, Kallweit E, Glodek P, 2000. Meat quality in pig crosses with special quality characteristics as compared to present Standard and Brand Pork Supply. Arch Anim Breed 43: 463–476.Google Scholar
  77. Lee YS, 2009. The role of genes in the current obesity epidemic. Ann Acad Med Singapore 38: 45–47.PubMedGoogle Scholar
  78. Lee YS, Poh LK, Loke KY, 2002. A novel melanocortin 3 receptor gene (MC3R) mutation associated with severe obesity. J Clin Endocrinol Metab 87: 1423–1426.PubMedCrossRefGoogle Scholar
  79. Li M, Zhu L, Li X, Shuai S, Teng X, Xiao H, et al. 2008. Expression profiling analysis for genes related to meat quality and carcass traits during postnatal development of backfat in two pig breeds. Sci China C Life Sci 51: 718–733.PubMedCrossRefGoogle Scholar
  80. Lindgren CM, Heid IM, Randall JC, Lamina C, Steinthorsdottir V, Qi L, et al. 2009. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution. PLoS Genet 5: e1000508.PubMedCrossRefGoogle Scholar
  81. Liu J, Damon M, Guitton N, Guisle I, Ecolan P, Vincent A, et al. 2009. Differentially-expressed genes in pig Longissimus muscles with contrasting levels of fat, as identified by combined transcriptomic, reverse transcription PCR, and proteomic analyses. J Agric Food Chem 57: 3808–3817.PubMedCrossRefGoogle Scholar
  82. Liu K, Wang G, Zhao SH, Liu B, Huang JN, Bai X, Yu M, 2010 (in press). Molecular characterization, chromosomal location, alternative splicing and polymorphism of porcineGFAT1 gene. Mol Biol Rep DOI 10.1007/s11033-009-9805-yGoogle Scholar
  83. Lord E, Ledoux S, Murphy BD, Beaudry D, Palin MF, 2005. Expression of adiponectin and its receptors in swine. J Anim Sci 83: 565–578.PubMedGoogle Scholar
  84. Lunney JK, 2007. Advances in swine biomedical model genomics. Int J Biol Sci 3: 179–184.PubMedGoogle Scholar
  85. Lyon HN, Emilsson V, Hinney A, Heid IM, Lasky-Su J, Zhu X, et al. 2007. The association of a SNP upstream of INSIG2 with body mass index is reproduced in several but not all cohorts. PLoS Genet 3: e61.PubMedCrossRefGoogle Scholar
  86. Mackowski M, Szymoniak K, Szydlowski M, Kamyczek M, Eckert R, Rozycki M, Switonski M, 2005. Missense mutations in exon 4 of the porcineLEPR gene encoding extracellular domain and their association with fatness traits. Anim Genet 36: 135–137.PubMedCrossRefGoogle Scholar
  87. Marklund L, Nyström P-E, Stern S, Andersson-Eklund L, Andersson L, 1999. Confirmed quantitative trait loci for fatness and growth on pig chromosome 4. Heredity 82: 134–141.PubMedCrossRefGoogle Scholar
  88. Martinez-Hernandez A, Enriquez L, Moreno-Moreno MJ, Marti A, 2007. Genetics of obesity. Public Health Nutr 10: 1138–1144.PubMedCrossRefGoogle Scholar
  89. Mazen I, El-Gammal M, Abdel-Hamid M, Amr K, 2009. A novel homozygous missense mutation of the leptin gene (N103K) in an obese Egyptian patient. Mol Genet Metab 97: 305–308.PubMedCrossRefGoogle Scholar
  90. McDaneld TG, Smith TP, Doumit ME, Miles JR, Coutinho LL, Sonstegard TS, et al. 2009. MicroRNA transcriptome profiles during swine skeletal muscle development. 10: 77.Google Scholar
  91. Meidtner K, Schwarzenbacher H, Scharfe M, Severitt S, Blöcker H, Fries R, 2009. Haplotypes of the porcine peroxisome proliferator-activated receptor delta gene are associated with backfat thickness. BMC Genet 10: 76PubMedCrossRefGoogle Scholar
  92. Mercadé A, Pérez-Enciso M, Varona L, Alves E, Noguera J, Sánchez A, Folch J, 2006. Adipocyte fatty-acid binding protein is closely associated to the porcineFAT1 locus on chromosome 4. J Anim Sci 84: 2907–2913.PubMedCrossRefGoogle Scholar
  93. Meyre D, Delplanque J, Chèvre JC, Lecoeur C, Lobbens S, Gallina S, et al. 2009. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet 41: 157–159.PubMedCrossRefGoogle Scholar
  94. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al. 1997. Nature 387: 903–908.PubMedCrossRefGoogle Scholar
  95. Mutch DM, Clément K, 2006. Unraveling the genetics of human obesity. PLoS Genet 2: e188.PubMedCrossRefGoogle Scholar
  96. Newcom DW, Stalder KJ, Baas TJ, Goodwin RN, Parrish FC, Wiegand BR, 2004. Breed differences and genetic parameters of myoglobin concentration in porcine longissimus muscle. J Anim Sci 82: 2264–2268.PubMedGoogle Scholar
  97. Nguyen NH, McPhee CP, 2005. Genetic parameters and responses of performance and body composition traits in pigs selected for high and low growth rate on a fixed ration over a set time. Genet Sel Evol 37: 199–213.PubMedCrossRefGoogle Scholar
  98. Oczkowicz M, Tyra M, Walinowicz K, Różycki M, Rejduch B, 2009. Known mutation (A3072G) in intron 3 of theIGF2 gene is associated with growth and carcass composition in Polish pig breeds. J Appl Genet 50: 257–259.PubMedCrossRefGoogle Scholar
  99. Orozco LD, Cokus SJ, Ghazalpour A, Ingram-Drake L, Wang S, van Nas A, et al. 2009. Copy number variation influences gene expression and metabolic traits in mice. Hum Mol Genet 18: 4118–4129.PubMedCrossRefGoogle Scholar
  100. Orzechowska B, Tyra M, Migdał W, Wojtysiak D, 2008. Effect of growth rate on the intramuscular fat content oflongissimus dorsi muscle in Polish Large White and Polish Landrace pigs. Ann Anim Sci 8: 263–270.Google Scholar
  101. Pérez-Enciso M, Clop A, Noguera J, Óvilo C, Coll A, Folch J, et al. 2000. A QTL on pig chromosome 4 affects fatty acid metabolism: evidence from Iberian by Landrace intercross. J Anim Sci 78: 2525–2531.PubMedGoogle Scholar
  102. Piórkowska K, Tyra M, Rogoz M, Ropka-Molik K, Oczkowicz M, Różycki M, 2010. Association of the melanocortin-4 receptor (MC4R) with feed intake, growth, fatness and carcass composition in pigs raised in Poland. Meat Sci 85: 297–301.PubMedCrossRefGoogle Scholar
  103. Pomp D, Nehrenberg D, Estrada-Smith D, 2008. Complex genetics of obesity in mouse models. Annu Rev Nutr 28: 331–345.PubMedCrossRefGoogle Scholar
  104. Ponsuksili S, Murani E, Walz C, Schwerin M, Wimmers K, 2007. Pre- and postnatal hepatic gene expression profiles of two pig breeds differing in body composition: insight into pathways of metabolic regulation. Physiol Genomics 29: 267–279.PubMedCrossRefGoogle Scholar
  105. Prokesch A, Hackl H, Hakim-Weber R, Bornstein SR, Trajanoski Z, 2009. Novel insights into adipogenesis from omics data. Curr Med Chem 16: 2952–2964.PubMedCrossRefGoogle Scholar
  106. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B, et al. 2006. The human obesity gene map: the 2005 update. Obesity 14: 529–644.PubMedCrossRefGoogle Scholar
  107. Reddy AM, Zheng Y, Jagadeeswaran G, Macmil SL, Graham WB, Roe BA, et al. 2009. Cloning, characterization and expression analysis of porcine microRNAs. BMC Genomics 10: 65.PubMedCrossRefGoogle Scholar
  108. Redinger RN, 2009. Fat storage and the biology of energy expenditure. Transl Res 154: 52–60.PubMedCrossRefGoogle Scholar
  109. Sanchez M-P, Iannuccelli N, Basso B, Bidanel J-P, Billon Y, Gandemer G, et al. 2007. Identification of QTL with effects on intramuscular fat content and fatty acid composition in a Duroc x Large White cross. BMC Genet 8: 55.PubMedCrossRefGoogle Scholar
  110. Schook L, Beever J, Rogers J, Humphray S, Archibald A, Chardon P, et al. 2005. Swine Genome Sequencing Consortium (SGSC): a strategic roadmap for sequencing the pig genome. Comp Funct Genomics 6: 251–255.PubMedCrossRefGoogle Scholar
  111. Sellier P, 1998. Genetics of meat and carcass traits. In: Rothschild MF, Ruvinsky A, eds., The genetics of pigs, pp. 463–510, CAB International, New York.Google Scholar
  112. Sha BY, Yang TL, Zhao LJ, Chen XD, Guo Y, Chen Y, et al. 2009. Genome-wide association study suggested copy number variation may be associated with body mass index in the Chinese population. J Hum Genet 54: 199–202.PubMedCrossRefGoogle Scholar
  113. Stachowiak M, Cieslak J, Skorczyk A, Nowakowska J, Szczerbal I, Szydlowski M, Switonski M, 2009. The pig CART (cocaine- and amphetamine-regulated transcript) gene and association of its microsatellite polymorphism with production traits. J Anim Breed Genet 126: 37–42.PubMedCrossRefGoogle Scholar
  114. Stachowiak M, Flisikowski K, Szydlowski M, Fries R, Switonski M, 2010. Postnatal transcription profile and polymorphism of theADIPOR1 gene in five pig breeds. Anim Genet 41: 97–100.PubMedCrossRefGoogle Scholar
  115. Stachowiak M, Szydlowski M, Cieslak J, Switonski M, 2007. SNPs in the porcine PPARGC1a gene: interbreed differences and their phenotypic effects. Cell Mol Biol Lett 12: 231–239.PubMedCrossRefGoogle Scholar
  116. Stachowiak M, Szydłowski M, Obarzanek-Fojt M, Świtoński M, 2006. An effect of a missense mutation in the porcine melanocortin-4 receptor (MC4R) gene on production traits in Polish pig breeds is doubtful. Anim Genet 37: 55–57.PubMedCrossRefGoogle Scholar
  117. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD, 1998. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 18: 213–215.PubMedCrossRefGoogle Scholar
  118. Suzuki K, Nishida A, 2006. Challenges of pig breeding in Japan. J Integr Field Sci 3: 53–58.Google Scholar
  119. Suzuki K, Irie M, Kadowaki H, Shibata T, Kumagai M, Nishida A, 2005. Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and intramuscular fat content. J Anim Sci 83: 2058–2065.PubMedGoogle Scholar
  120. Szczerbal I, Chmurzynska A, Switonski M, 2007. Cytogenetic mapping of eight genes encoding fatty acid binding proteins (FABPs) in the pig genome. Cytogenet Genome Res 118: 63–68.PubMedCrossRefGoogle Scholar
  121. Szczerbal I, Foster HA, Bridger JM, 2009. The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis system. Chromosoma 118: 647–663.PubMedCrossRefGoogle Scholar
  122. Szydlowski M, Stachowiak M, Mackowski M, Kamyczek M, Eckert R, Rozycki M, Switonski M, 2004. No major effect of the leptin gene polymorphism on porcine production traits. J Anim Breed Genet 121: 149–155.CrossRefGoogle Scholar
  123. Tao YX, Segaloff DL, 2004. Functional characterization of melanocortin-3 receptor variants identify a loss-of-function mutation involving an amino acid critical for G protein-coupled receptor activation. J Clin Endocrinol Metab 89: 3936–3942.PubMedCrossRefGoogle Scholar
  124. Taylor BA, Wnek C, Schroeder D, Phillips SJ, 2001. Multiple obesity QTLs identified in an intercross between the NZO (New Zealand obese) and the SM (small) mouse strains. Mamm Genome 12: 95–103.PubMedCrossRefGoogle Scholar
  125. The Complex Trait Consortium, 2004. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36: 1133–1137.CrossRefGoogle Scholar
  126. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, et al. 2009. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 41: 18–24.PubMedCrossRefGoogle Scholar
  127. Uemoto Y, Sata S, Ohnishi C, Terai S, Komatsuda A, Kobayashi E, 2009. The effects of single and epistatic quantitative trait loci for fatty acid composition in a Meishan x Duroc crossbred population. J Anim Sci 87: 4370–3476.CrossRefGoogle Scholar
  128. Vaisse C, Clement K, Guy-Grand B, Froguel P, 1998. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 20: 113–114.PubMedCrossRefGoogle Scholar
  129. Van den Maagdenberg K, Stickens A, Claeys E, Seynaeve M, Clinquart A, Georges M, et al. 2007. The Asp298Asn missense mutation in the porcine melanocortin-4 receptor (MC4R) gene can be used to affect growth and carcass traits without an effect on meat quality. Animal 1: 1089–1098.Google Scholar
  130. Van Laere A, Nguyen M, Braunschweig M, Nezer C, Colette C, Moreau L, et al. 2003. A regulatory mutation inIGF2 causes a major QTL effect on muscle growth in the pig. Nature 425: 832–836.PubMedCrossRefGoogle Scholar
  131. Warden CH, Yi N, Fisler J, 2004. Epistasis among genes is a universal phenomenon in obesity: evidence from rodent models. Nutrition 20: 74–77.PubMedCrossRefGoogle Scholar
  132. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, et al. 2009. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 41: 25–34.PubMedCrossRefGoogle Scholar
  133. Wood JD, Richardson RI, Nute GR, Fisher AV, Campo MM, Kasapidou E, et al. 2003. Effects of fatty acids on meat quality: a review. Meat Sci 66: 21–32.CrossRefGoogle Scholar
  134. Wuschke S, Dahm S, Schmidt C, Joost HG, Al-Hasani H, 2007. A meta-analysis of quantitative trait loci associated with body weight and adiposity in mice. Int J Obes 31: 829–841.Google Scholar
  135. Xu P, Vernooy SY, Guo M, Hay BA, 2003. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. CurrBiol 13: 790–795.Google Scholar
  136. Xu ZY, Yang H, Xiong YZ, Deng CY, Li FE, Lei MG, Zuo B. 2010 (in press). Identification of three novel SNPs and association with carcass traits in porcineTNNI1 andTNNI2. Mol Biol Rep DOI 10.1007/s1 1033-010-0010-9.Google Scholar
  137. Yang X, Deignan JL, Qi H, Zhu J, Qian S, Zhong J, et al. 2009. Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks. Nat Genet 41: 415–423.PubMedCrossRefGoogle Scholar
  138. Yeo GS, Connie Hung CC, Rochford J, Keogh J, Gray J, Sivaramakrishnan S, et al. 2004. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci 7: 1187–1189.PubMedCrossRefGoogle Scholar
  139. Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O’Rahilly S, 1998. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat Genet 20: 111–112.PubMedCrossRefGoogle Scholar
  140. Zhang ZY, Ren J, Ren DR, Ma JW, Guo YM, Huang LS, 2009. J Anim Sci 87: 3458–3463.PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2010

Authors and Affiliations

  • M. Switonski
    • 1
  • M. Stachowiak
    • 1
  • J. Cieslak
    • 1
  • M. Bartz
    • 1
  • M. Grzes
    • 1
  1. 1.Department of Genetics and Animal BreedingPoznań University of Life SciencesPoznańPoland

Personalised recommendations