Journal of Applied Genetics

, Volume 50, Issue 4, pp 361–369 | Cite as

Correlation between porcinePPARGC1A mRNA expression and its downstream target genes in backfat andlongissimus dorsi muscle

  • T. Erkens
  • J. Vandesompele
  • A. Van Zeveren
  • L. J. Peelman
Original Article


Knowledge of in vivo relationship between the coactivatorPPARGC1A and its target genes is very limited, especially in the pig. In this study, a real-time PCR experiment was performed onlongissimus dorsi muscle (MLD) and backfat with 10 presumedPPARGC1A downstream target genes, involved in energy and fat metabolism, to identify possible relationships withPPARGC1A mRNA expression in vivo in the pig (n = 20). Except forUCP3 andLPL, a very significant difference in expression was found between MLD and backfat for all genes (P < 0.01). Hierarchical cluster analysis and the significant pairing of mRNA expression data between sampling locations suggested a genetic regulation of the expression of several target genes. A positive correlation withPPARGC1A was found forCPT1B, GLUT4, PDK4, andTFAM (P < 0.0001). A negative correlation was found forUCP2, FABP4, LEP (P < 0.0001), andTNF (P = 0.0071). No significant correlation was detected forUCP3 andLPL. This study provides evidence for a clear difference in mRNA expression of crucial genes in fat and energy metabolism between 2 important tissues. Our data suggest a clear impact ofPPARGC1A on energy and lipid metabolism in vivo in the pig, through several of these downstream target genes.


correlation mRNA pig PPARGC1A RT-qPCR target genes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carey AL, Petersen EW, Bruce CR, Southgate RJ, Pilegaard H, Hawley JA, et al.2006. Discordant gene expression in skeletal muscle and adipose tissue of patients with type 2 diabetes: effect of interleukin-6 infusion. Diabetologia 49: 1000–1007.CrossRefPubMedGoogle Scholar
  2. Cawthorn WP, Sethi JK, 2008. TNF-α and adipocyte biology. FEBS Lett 582: 117–131.CrossRefPubMedGoogle Scholar
  3. Damon M, Vincent A, Lombardi A, Herpin P, 2000. First evidence of uncoupling protein-2 (UCP-2) and -3 (UCP-3) gene expression in piglet skeletal muscle and adipose tissue. Gene 246: 133–141.CrossRefPubMedGoogle Scholar
  4. Dulloo AG, Samec S, 2001. Uncoupling proteins: their roles in adaptive thermogenesis and substrate metabolism reconsidered. Br J Nutr 86: 123–139.CrossRefPubMedGoogle Scholar
  5. Erkens T, Bilek K, Van Zeveren A, Peelman LJ, 2008. Two new splice variants in porcine PPARGC1A. BMC Research Notes 1: 138CrossRefPubMedGoogle Scholar
  6. Erkens T, Van Poucke M, Vandesompele J, Goossens K, Van Zeveren A, Peelman LJ, 2006. Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnol 6: 41.CrossRefPubMedGoogle Scholar
  7. Fischer H, Gustafsson T, Sundberg CJ, Norrbom J, Ekman M, Johansson O, Jansson E, 2006. Fatty acid binding protein 4 in human skeletal muscle. Biochem Bioph Res Co 346: 125–130.CrossRefGoogle Scholar
  8. Fleury C, Sanchis D, 1999. The mitochondrial uncoupling protein-2: current status. Int J Biochem Cell Biol 31: 1261–1278.CrossRefPubMedGoogle Scholar
  9. Handschin C, Spiegelman BM, 2006. Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27: 728–735.PubMedGoogle Scholar
  10. Jacobs K, Rohrer G, Van Poucke M, Piumi F, Yerle M, Barthenschlager H, et al. 2006. Porcine PPARGC1A (peroxisome proliferative activated receptor gamma coactivator 1A): coding sequence, genomic organization, polymorphisms and mapping. Cytogenet Genome Res 112: 106–113.CrossRefPubMedGoogle Scholar
  11. Jung K, Park HJ, Kim YH, Hong JP, 2007. Expression of tumor necrosis factor-α and cyclooxygenase-2 mRNA in porcine split-thickness wounds treated with epidermal growth factor by quantitative real-time PCR. Res Vet Sci 82: 344–348.CrossRefPubMedGoogle Scholar
  12. Kageyama H, Hirano T, Okada K, Ebara T, Kageyama A, Murakami T, et al. 2003. Lipoprotein lipase mRNA in white adipose tissue but not in skeletal muscle is increased by pioglitazone through PPAR-γ. Biochem Bioph Res Co 305: 22–27.CrossRefGoogle Scholar
  13. Kakuma T,Wang Z-W, Pan W, Unger RH, Zhou Y-T, 2000. Role of leptin in peroxisome proliferator-activated receptor gamma coactivator-1 expression. Endocrinology 141: 4576–4582.CrossRefPubMedGoogle Scholar
  14. Kim HJ, Kim SK, Shim WS, Lee JH, Hur KY, Kang ES, et al. 2008. Rosiglitazone improves insulin sensitivity with increased serum leptin levels in patients with type 2 diabetes mellitus. Diabetes Res Clin Pr 81: 42–49.CrossRefGoogle Scholar
  15. Kim MS, Sweeney TR, Shigenaga JK, Chui LG, Moser A, Grunfeld C, Feingold KR, 2007. Tumor necrosis factor and interleukin 1 decrease RXRα, PPARα, PPARγ, LXRα, and the coactivators SRC-1, PGC-1α, and PGC-1β in liver cells. Metabolism 56: 267–279.CrossRefPubMedGoogle Scholar
  16. Lago R, Gómez R, Lago F, Gómez-Reino J, Gualillo O, 2008. Leptin beyond body weight regulation — current concepts concerning its role in immune function and inflammation. Cell Immunol 252: 139–145.CrossRefPubMedGoogle Scholar
  17. Li L, Beauchamp MC, Renier G, 2002. Peroxisome proliferator-activated receptor α and γ agonists upregulate human macrophage lipoprotein lipase expression. Atherosclerosis 165: 101–110.CrossRefPubMedGoogle Scholar
  18. Lin J, Wu H, Tarr PT, Zhang C-Y, Wu Z, Boss O, et al. 2002. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418: 797–801.CrossRefPubMedGoogle Scholar
  19. McGarry JD, Brown NF, 1997. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 244: 1–14.CrossRefPubMedGoogle Scholar
  20. Merkel M, Eckel RH, Goldberg IJ, 2002. Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 43: 1997–2006.CrossRefPubMedGoogle Scholar
  21. Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, et al. 2001. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci USA 98: 3820–3825.CrossRefPubMedGoogle Scholar
  22. Miura S, Kai Y, Ono M, Ezaki O, 2003. Overexpression of peroxisome proliferator-activated receptor γ coactivator-1α down-regulates GLUT4 mRNA in skeletal muscles. J Biol Chem 278: 31385–31390.CrossRefPubMedGoogle Scholar
  23. Moore ML, Park EA, McMillin JB, 2003. Upstream stimulatory factor represses the induction of carnitine palmitoyltransferase-1α expression by PGC-1. J Biol Chem 278: 17263–17268.CrossRefPubMedGoogle Scholar
  24. Oberkofler H, Esterbauer H, Linnemayr V, Strosberg AD, Krempler F, Patsch W, 2002. Peroxisome proliferator-activated receptor (PPAR) γ coactivator-1 recruitment regulates PPAR subtype specificity. J Biol Chem 277: 16750–16757.CrossRefPubMedGoogle Scholar
  25. Oberkofler H, Klein K, Felder TK, Krempler F, Patsch W, 2006. Role of peroxisome proliferator-activated receptor-γ coactivator-1α in the transcriptional regulation of the human uncoupling protein 2 gene in INS-1E cells. Endocrinology 147: 966–976.CrossRefPubMedGoogle Scholar
  26. Papadopoulos GA, Erkens T, Maes DG, Peelman LJ, van Kempen TA, Buyse J, Janssens GP, 2009. Peripartal feeding strategy with different n-6:n-3 ratios in sows: effect on gene expression in backfat white adipose tissue postpartum. Br J Nutr 101: 197–205.CrossRefPubMedGoogle Scholar
  27. Peffer PL, Lin X, Jacobi SK, Gatlin LA, Woodworth J, Odle J, 2007. Ontogeny of carnitine palmitoyltransferase I activity, carnitine-Km, and mRNA abundance in pigs throughout growth and development. J Nutr 137: 898–903.Google Scholar
  28. Pelton PD, Zhou L, Demarest KT, Burris TP, 1999. PPARγ activation induces the expression of the adipocyte fatty acid binding protein gene in human monocytes. Biochem Biophys Res Commun 261: 456–458.CrossRefPubMedGoogle Scholar
  29. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM, 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829–839.CrossRefPubMedGoogle Scholar
  30. Ramachandran B, Yu G, Gulick T, 2008. Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits. J Biol Chem 283: 11935–11946.CrossRefPubMedGoogle Scholar
  31. Ramsay TG, Richards MP, 2005. Leptin and leptin receptor expression in skeletal muscle and adipose tissue in response to in vivo porcine somatotropin treatment. J Anim Sci 83: 2501–2508.PubMedGoogle Scholar
  32. Samulin J, Berget I, Lien S, Sundvold H, 2008. Differential gene expression of fatty acid binding proteins during porcine adipogenesis. Comp Biochem Physiol B Biochem Mol Biol 151: 147–152.CrossRefPubMedGoogle Scholar
  33. Soyal S, Krempler F, Oberkofler H, Patsch W, 2006. PGC-1α: a potent transcriptional cofactor involved in the pathogenesis of type 2 diabetes. Diabetologia 49: 1477–1488.CrossRefPubMedGoogle Scholar
  34. Spiegelman BM, Puigserver P, Wu Z, 2000. Regulation of adipogenesis and energy balance by PPARγ and PGC-1. Int J Obesity 24: S8–10.Google Scholar
  35. Stachowiak M, Szydlowski M, Cieslak J, Switonski M, 2007. SNPs in the porcine PPARGC1a gene: interbreed differences and their phenotypic effects. Cell Mol Biol Lett 12: 231–239.CrossRefPubMedGoogle Scholar
  36. Terada S, Tabata I, 2004. Effects of acute bouts of running and swimming exercise on PGC-1α protein expression in rat epitrochlearis and soleus muscle. Am J Physiol Endocrinol Metab 286: E208–216.CrossRefPubMedGoogle Scholar
  37. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, et al. 1999. Housekeeping genes as internal standards: use and limits. J Biotechnol 75: 291–295.CrossRefPubMedGoogle Scholar
  38. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F, 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: 0034.1–0034.11.CrossRefGoogle Scholar
  39. Villarroya F, Iglesias R, Giralt M, 2007. PPARs in the control of uncoupling proteins gene expression. PPAR Res 2007: 74364.PubMedGoogle Scholar
  40. Wang MY, Orci L, Ravazzola M, Unger RH, 2005. Fat storage in adipocytes requires inactivation of leptin’s paracrine activity: implications for treatment of human obesity. Proc Natl Acad Sci USA 102: 18011–18016.CrossRefPubMedGoogle Scholar
  41. Wende AR, Huss JM, Schaeffer PJ, Giguère V, Kelly DP, 2005. PGC-1α coactivates PDK4 gene expression via the orphan nuclear receptor ERRα: a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol 25: 10684–10694.CrossRefPubMedGoogle Scholar
  42. Willson TM, Lambert MH, Kliewer SA, 2001. Peroxisome proliferators-activated receptor γ and metabolic disease. Annu Rev Biochem 70: 341–367.CrossRefPubMedGoogle Scholar
  43. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, et al. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115–124.CrossRefPubMedGoogle Scholar
  44. Yoon JC, Puigserver P, Chen GX, Donovan J, Wu ZD, Rhee J, et al. 2001. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413: 131–138.CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2009

Authors and Affiliations

  • T. Erkens
    • 1
  • J. Vandesompele
    • 2
  • A. Van Zeveren
    • 1
  • L. J. Peelman
    • 1
  1. 1.Department of Nutrition, Genetics and Ethology, Faculty of Veterinary MedicineGhent UniversityMerelbekeBelgium
  2. 2.Centre for Medical Genetics GhentGhent University HospitalBelgium

Personalised recommendations