Journal of Applied Genetics

, Volume 50, Issue 4, pp 329–339

Different patterns of genetic structure of relict and isolated populations of endangered peat-bog pine (Pinus uliginosa Neumann)

Original Article

Abstract

Recent changes in environmental conditions in populations of peat-bog pine (Pinus uliginosa Neumann) caused rapid decline or even extinction of the species in several stands in Central Europe. Conservation strategies forP. uliginosa require information about the evolutionary history and genetic structure of its populations. Using isozymes we assessed the genetic structure ofP. uliginosa from four isolated stands in Poland and compared the results to genetic structures of other closely related pine species including eight populations ofPinus mugo, ten ofPinus sylvestris and one ofPinus uncinata. The level of genetic variability ofP. uliginosa measured by the mean number of alleles per locus and average heterozygosity was similar to others related toP. uliginosa taxa from the reference group but it differs among populations. High genetic similarity was found between two populations ofP. uliginosa from Low Silesian Pinewood. The populations were genetically distinct as compared to other populations includinglocus classicus of the species from the peat bog at Batorów Reserve. Very low genetic distance (Dn = 0.002) and small genetic differentiation (GST = 0.003) were found betweenP. uliginosa andP. mugo in the sympatric populations of the species from Zieleniec peat bog suggesting the ongoing natural hybridisation and genetic contamination of peat-bog pine from this area. Some evidence for skew in allele frequency distribution potentially due to recent bottleneck was found in population from Low Silesian Pinewood. The analysed open pollinated progeny derived from twoP. uliginosa stands from Low Silesian Pine-wood showed the excess of homozygotes as compared to the maternal trees indicating high level of inbreeding (F = 0.105,F = 0.081). The results are discussed in the context of evolution ofP. uliginosa populations, taxonomic relationships between the analysed species and conservation strategies for active protection of peat-bog pine.

Keywords

endangered species gene flow genetic structure isolated populations izozymes peat bog pine Pinus uliginosa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bączkiewicz A, 1995. Biometrical study of some individuals chosen from Pinus mugo Turra populations in the peat bog “Bór na Czerwonem”. Acta Soc Bot Pol 64: 71–80.Google Scholar
  2. Bobowicz MA, 1990. Hybrids ofPinus mugo Turra ×Pinus sylvestris L. from “Bór na Czerwonem” Reserve in the Nowotarska Valley (in Polish). Wyd. Naukowe UAM Poznań.Google Scholar
  3. Boratyńska K, Boratyński A, Lewandowski A, 2003. Morphology ofPinus uliginosa (Pinaceae) needles from populations exposed to and isolated from the direct influences ofPinus sylvestris. Bot J Lin Soc 142: 83–91.CrossRefGoogle Scholar
  4. Boratyński A, 1994. Protected and worth protection trees and shrubs of the Polish part of the Sudety Mountains and the Sudety Foothills. 7.Pinus mugo Turra andPinus uliginosa Neumann. (in Polish). Arboretum Kórnickie 39: 63–85.Google Scholar
  5. Boratyński A, Boratyńska K, Lewandowski A, Gołąb Z, Kiciński P, 2003. Evidence of the possibility of natural reciprocal crosses betweenPinus sylvestris andP. uliginosa based on the phenology of reproductive organs. Flora 198: 377–388.Google Scholar
  6. Christensen KI, 1987. Taxonomic revision of the Pinus mugo complex and P. × rhaetica (P. mugo × sylvestris) (Pinaceae). Nord J Bot 7: 383–408.CrossRefGoogle Scholar
  7. Corander J, Sirén J, Arjas E, 2008. Bayesian Spatial Modelling of Genetic Population Structure. Computation Stat 23: 111–129.CrossRefGoogle Scholar
  8. Cornuet JM, Luikart G, 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001–2014.PubMedGoogle Scholar
  9. Danielewicz W, Zieliński J, 2000. Protection of thePinus uliginosa Neumann on the area of the Low Silesian Pinewood. (in Polish). Przegląd Przyrodniczy XI 2–3: 113–124.Google Scholar
  10. Excoffier L, Laval G, Schneider S, 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform Online 1: 47–50.PubMedGoogle Scholar
  11. El-Kassaby YA, 1991. Genetic variation within and among conifer populations: review and evaluation of methods. In: Fineschi S., Malvolti M. E., Cannata F., Hattemer H. H, eds. Biochemical markers in the population genetics of forest trees. Acad Pub Hague: 63–74.Google Scholar
  12. Frankham R, 1997. Do island populations have less genetic variation than mainland populations? Heredity 78: 311–327.CrossRefPubMedGoogle Scholar
  13. Gołąb Z, 1999.Pinus uliginosa Neumann in Wielkie Torfowiska Batorowskie (The Great Batorowskie Peatbog) in the Stołowe Mountains. (in Polish). Szczeliniec 3: 41–48.Google Scholar
  14. Goncharenko GG, Silin AE, Padutov VE, 1995. Intra-and interspecific genetic differentiation in closely related pines fromPinus subsectionSylvestres (Pinaceae) in the former Soviet Union. Plant Syst Evol 194: 39–54.CrossRefGoogle Scholar
  15. Hamrick JL, Blanton HM, Hamrick KJ, 1989. Genetic structure of geographically marginal populations of ponderosa pine. Am J Bot 76: 1559–1568.CrossRefGoogle Scholar
  16. Hedrick PW, 1974. Genetic similarity and distance: comments and comparisons. Evolution 29: 362–366.CrossRefGoogle Scholar
  17. Jain SK, Workman PL, 1967. The use of generalized F-statistics in the theory of inbreeding and selection. Nature 214: 674–678.CrossRefPubMedGoogle Scholar
  18. Kärkkäinen K, Savolainen O,1993. The degree of early inbreeding depression determines the selfing rate at the seed stage: model and results fromPinus sylvestris (Scots pine). Heredity 71: 160–166.CrossRefGoogle Scholar
  19. Kliman RM, Andolfatto P, Coyne JA, Depaulis F, Kreitman M, 2000 The population genetics of the origin and divergence of theDrosophila simulans complex species. Genetics 156: 1913–1931.PubMedGoogle Scholar
  20. Kormutak A, Ostrolucka M, Vookova B, Petrova A, Feckova M, 2005. Artificial hybridization ofPinus sylvestris L. andPinus mugo Turra. Acta Biol Cracov Bot 47/1: 129–134.Google Scholar
  21. Lauranson-Broyer J, Krzakowa M, Lebreton PH, 1997. Reconnaissance chimio-systematique et biometrique du pin de tourbierePinus × uliginosa (Neumann). C R Acad Sci Paris, Sci de la vie. 320: 557–565.Google Scholar
  22. Lewandowski A, Boratyński A, Mejnartowicz L, 2000. Allozyme investigations on the genetic differentiation between closely related pines —Pinus sylvestris, P. mugo, P.uncinata, andP. uliginosa (Pinaceae). Plant Syst Evol 221: 15–24.CrossRefGoogle Scholar
  23. Lewandowski A, Samoćko J, Boratyńska K, Boratyński A, 2002. Genetic differences between two Polish populations ofPinus uliginosa, compared toP. sylvestris andP. mugo. Dendrobiology 48: 51–57.Google Scholar
  24. Lewandowski A, Burczyk J, Wachowiak W, Boratyński A, Prus-Głowacki W, 2005. Genetic evaluation of seeds of highly endangeredPinus uliginosa Neumann from Węgliniec Reserve for ex-situ conservation program. Acta Soc Bot Pol 74: 237–242.Google Scholar
  25. Lewandowski A, Dering M, 2006. Crossability betweenPinus uliginosa and its putative parental speciesPinus sylvestris andPinus mugo. Silvae Genet 55: 52–54.Google Scholar
  26. Luikart G, Cornuet JM, 1998. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12: 228–237.CrossRefGoogle Scholar
  27. Marcysiak K, Boratyńska K, Mazur M, 2003. Variability ofPinus uliginosa cones from the peat-bog in Węgliniec. Dendrobiology 49: 43–47.Google Scholar
  28. Muona O, Szmidt AE, 1985. A multilocus study of natural populations ofPinus sylvestris. Lect Notes Biomath 60: 226–240.Google Scholar
  29. Nei M, 1972. Genetic distance between populations. Am Nat 106: 283–292.CrossRefGoogle Scholar
  30. Nei M, Roychoudhry AK, 1974. Sampling variances of heterozygosity and genetic distance. Genetics 76: 379–390.PubMedGoogle Scholar
  31. Nei M, 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.Google Scholar
  32. Neumann C, 1837. Über eine auf den Seefeldern bei Reinerz u. einigen ähnlichen Gebirgsmooren der königl. Oberförsterei Karlsberg in der Graftschaft Glatz vorkommende noch unbeschrieben Form der Gattung Pinus. — Jahresber. Schlesische Gesellschaft für Vaterländische Kultur 11: 52–57.Google Scholar
  33. Petit RJ, Bodénès C, Ducousso A, Roussel G, Kremer A, 2004. Hybridization as a mechanism of invasion in oaks. New Phytol 161: 151–164.CrossRefGoogle Scholar
  34. Prus-Głowacki W, Szweykowski J, 1979. Studies on antigenic differences in needle proteins ofPinus sylvestris L.,P. mugo Turra,P. uliginosa Neumann andP. nigra Arnold. Acta Soc Bot Pol 48: 217–238.Google Scholar
  35. Prus-Głowacki W, Szweykowski J, 1983. Studies on isoenzyme variability in populations ofPinus sylvestris L.,Pinus mugo Turra,Pinus uliginosa Neumann and individuals from a hybrid swarm population. B Sci Amis Poznań 22: 107–122.Google Scholar
  36. Prus-Głowacki W, Bujas E, Ratyńska H, 1998. Taxonomic position ofPinus uliginosa Neumann as related to other taxa ofPinus mugo complex. Acta Soc Bot Pol 67: 269–274.Google Scholar
  37. Rudin D, Ekberg I, 1978. Linkage studies inPinus sylvestris using macro-gametophyte allozymes. Silvae Genet 27: 1–2.Google Scholar
  38. Shea KL, Furnier GR, 2002. Genetic variation and population structure in central and isolated populations of balsam fir,Abies balsamea (Pinaceae). Am J Bot 89: 783–791.CrossRefGoogle Scholar
  39. Siedlewska A, 1994. Isoenzymatic differentiation in putative hybrid swarm population (Pinus mugo Turra ×P. sylvestris L.) from “Torfowisko Zieleniec” peat-bog. Acta Soc Bot Pol 63: 325–332.Google Scholar
  40. Siedlewska A, Prus-Głowacki W, 1995. Genetic structure and taxonomic position ofPinus uliginosa Neumann population from Wielkie Torfowisko Batorowskie in Stołowe Mts. (locus classicus). Acta Soc Bot Pol 64: 51–58.Google Scholar
  41. Slatkin M, 1985. Rare alleles as indicators of gene flow. Evolution 39: 53–65.CrossRefGoogle Scholar
  42. Szmidt AE, Yazdani R, 1984. Electrophoretic studies of genetic polymorphism of shikimate and 6-phosphogluconate dehydrogenases in Scots pine (Pinus sylvestris). Arboretum Kórnickie 29: 63–72.Google Scholar
  43. Wachowiak W, Lewandowski A, Prus-Głowacki W, 2005a. Reciprocal controlled crosses betweenPinus sylvestris andP. mugo verified by a species-specific cpDNA marker. J Appl Genet 46: 41–43.PubMedGoogle Scholar
  44. Wachowiak W, Celiński K, Prus-Głowacki W, 2005b. Evidence of natural reciprocal hybridisation betweenPinus uliginosa andP. sylvestris in the sympatric population of the species. Flora 200: 563–568.Google Scholar
  45. Wachowiak W, Prus-Głowacki W, 2008. Hybridization processes in sympatric populations of pinesPinus sylvestris L.,P. mugo Turra andP. uliginosa Neumann. Plant Syst Evol 271: 21–40.CrossRefGoogle Scholar
  46. Wimmer F, 1837. Über die Zapfen vonPinus silvestris, pumilio unduliginosa. Verh Bot Sect, Übersicht d. Arb. U. Veränd. der Schlesischen Ges. f. Vaterländ. Kultur, Breslau 1837–1840: 93–98.Google Scholar
  47. Yazdani R, Rudin D, 1982. Inheritance of fluorescence esterase and B-galatosidase, in haploid and diploid tissues ofPinus sylvestris L. Hereditas 96: 191–194.CrossRefGoogle Scholar
  48. Zarzycki K, Kaźmierczakowa R, 1993. The Polish Red Data Book of Plants. (in Polish). Kraków 1993.Google Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2009

Authors and Affiliations

  1. 1.Institute of DendrologyPolish Academy of SciencesKórnikPoland
  2. 2.Faculty of Biology, Institute of Experimental Biology, Department of GeneticsAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations