Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The determinants of grain texture in cereals

  • 285 Accesses

  • 20 Citations


Kernel hardness is an important agronomic trait that influences end-product properties. In wheat cultivars, this trait is determined by thePuroindoline a (Pina) andPuroindoline b (Pinb) genes, located in theHardness locus (Ha) on chromosome 5DS of the D genome. Wild type alleles code puroindoline a (PINA) and puroindoline b (PINB) proteins, which form a 15-kDa friabilin present on the surface of water-washed starch granules. Both the proteins are accumulated in the starch endosperm cells and aleurone of the mature kernels.Puroindoline-like genes coding puroindoline-like proteins in the starch endosperm occur in some of the genomes of Triticeae and Aveneae cereals. Orthologs are present in barley, rye and oats. However, some genomes of these diploid and polyploid cereals, like that ofTriticum turgidum var.durum (AABB) lack thepuroindoline genes, having a very hard kernel texture. The two wild type alleles in opposition (dominant loci) control the soft pheno-type. Mutation either inPina orPinb or in both leads to a medium-hard or hard kernel texture. The most frequent types ofPin mutations are point mutations within the coding sequence resulting in the substitution of a single amino acid or a null allele. The latter is the result of a frame shift determined by base deletion or insertion or a one-point mutation to the stop codon. The lipid-binding properties of the puroindolines affect not only the dough quality but also the plants’ resistance to pathogens. Genetic modification of cereals withPuroindoline genes and/or their promoters enable more detailed functional analyses and the production of plants with the desired characteristics.

This is a preview of subscription content, log in to check access.


  1. Amoroso MG, Longobardo L, Capprarelli R, 2004. Real time RT-PCR and flow cytometry to investigate wheat kernel hardness: role of puroindoline genes and proteins. Biotechnol Lett 26: 1731–1737.

  2. Baker RJ, 1977. Inheritance of kernel hardness in spring wheat. Crop Sci 17: 960–962.

  3. Bhave M., Morris, C. F., 2008a. Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol Biol 66, 205–219.

  4. Bhave M, Morris CF, 2008b. Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Mol Biol 66, 221–231.

  5. Beecher B, Smidansky ED, See D, Blake TK, Giroux MJ, 2001. Mapping and sequence analysis of barley hordoindolines. Theor Appl Genet 102: 833–840.

  6. Beecher B, Bettge A, Smidansky E, Giroux MJ, 2002. Expression of wild-typePinB sequence in transgenic wheat complements a hard phenotype. Theor Appl Genet 105: 870–877.

  7. Blochet J-E, Chevalier C, Forest E, Pebay-Peyroula E, Gautier MF, Joudrier P, et al. 1993. Complete amino acid sequence of puroindoline, a new basic and cysteine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by Triton X-114 phase partitioning. FEBS Letters 329: 336–340.

  8. Breseghello F, Finney PL, Gaines C, Andrews L, Tanaka J, Penner G, Sorrells ME, 2005. Genetic loci related to kernel quality differences between a soft and a hard wheat cultivar. Crop Sci 45: 1685–1695.

  9. Broekaert WF, Marin W, Terras FRG, De Bolle MFC, Thevissen K, De Samblanx GW, Osborn RW, 1997. Antimicrobial peptides from plants. Crit Rev Plant Sci 16: 297–323.

  10. Bushuk W, 1998. Wheat breeding for end-product use. Euphytica 100: 137–145.

  11. Campbell KG, Bergman CJ, Gaulberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, et al. 1999. Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39: 1184–1195.

  12. Caldwell KS, Langridge P, Powell W, 2004. Comparative sequence analysis of the region harboring the hardness locus in barley and its colinear region in rice. Plant Physiol 136: 1–14.

  13. Cane K, Spackman M, Eagles HA, 2004. Puroindoline genes and their effects on grain quality traits in southern Australian wheat cultivars. Aust J Agric Res 55: 89–95

  14. Capparelli R, Borriello G, Giroux MJ, Amoroso MG, 2003. Puroindoline A-gene expression is involved in association of puroindolines to starch. Theor Appl Genet 107: 1463–1468.

  15. Capparelli R, Amoroso MG, Palumbo D, Iannaccone M, Faleri C, Cresti M, 2005. Two plant puroindolines colocalize in wheat seed andin vitro synergistically fight against pathogens. Plant Mol Biol 58: 857–867.

  16. Chang C, Zhang H, Xu J, Li W, Liu G, You M, Li B, 2006. Identification of allelic variations of puroindoline genes controlling grain hardness in wheat using a modified denaturing PAGE. Euphytica 152: 255–234.

  17. Chantret N, Cenci A, Sabot F, Anderson O, Dubcovsky J, 2004. Sequencing of theTriticum monococcum Hardness locus reveals good microcolinearity with rice. Mol Genet Genomics 271: 377–386.

  18. Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, et al. 2005. Molecular basis of evolutionary events that shaped theHardness locus in diploid and polyploid wheat species (Triticum andAegilops). Plant Cell 17: 1033–1045.

  19. Chen F, He ZH, Xia XC, Lillemo M, Morris CF, 2005. A new puroindoline b mutation present in Chinese winter wheat cultivar Jingdong 11. J Cereal Sci 42: 267–269.

  20. Chen F, He ZH, Xia XC, Xia LQ, Zhang XY, Lillemo M, Morris CF, 2006. Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theor Appl Genet 112: 400–409.

  21. Chen F, Yu Y, Xia X, He Z, 2007. Prevalence of a novel puroindoline b allele in Yunnan endemic wheats (Triticum aestivum ssp.Yunnanense King). Euphytica 156: 39–46.

  22. Clarke B, Rahman S, 2005. A microarray analysis of wheat grain hardness. Theor Appl Genet 110: 1259–1267.

  23. Corona V, Gazza L, Zanier R, Pogna NE, 2001a. A tryptophan-to-arginine change in the tryptophanrich domain of puroindoline b in five French bread wheat cultivars (Triticum aestivum L.). J Genet Breed 55: 187–189.

  24. Corona V, Gazza L, Boggini G, Pogna NE, 2001b. Variation in friabilin composition as determined by A-PAGE fractionation and PCR amplification, and its relationship to grain hardness in bread wheat. J Cereal Sci 34: 243–250.

  25. Darlington HF, Rouster J, Hoffman L, Halford NG, Shewry PR, Simpson DJ, 2001. Identyfication and molecular characterization of hordoindolines from barley grain. Plant Mol Biol 47: 785–794.

  26. Darlington HF, Tecsi L, Harris N, Griggs DL, Cantrell IC, Shewry PR, 2000. Starch granule associated proteins in barley and wheat. J Cereal Sci 32: 21–29.

  27. Digeon J-F, Guiderdoni E, Alary R, Michaux-Ferričre N, Joudrier P, Gautier M-F, 1999. Cloning of a wheat puroindoline gene promoter by IPCR and analysis of promoter regions requiredfortissue-specific expression in transgenic rice seeds. Plant Mol Biol 39: 1101–1112.

  28. Douliez J-P, Michon T, Elmorjani K, Marion D, 2000. Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J Cereal Sci 32: 1–20.

  29. Dubreil L, Compoint JP, Marion D, 1997. Interaction of puroindoline with wheat flour polar lipids determines their foaming properties. J Agric Food Chem 45: 108–116.

  30. Dubreil L, Gaborit T, Bouchet B, Gallant DJ, Broekaert WF, Quillien L, Marion D, 1998a. Spatial and temporal distribution of the major isoforms of puroindolines (puroindoline-a and puroindoline-b) and non specific lipid transfer protein (ns-LTP1e1)ofTriticum aestivum seeds. Relationships with their in vitro antifungal properties. Plant Sci 138: 121–135.

  31. Dubreil L, Meliande S, Chiron H, Compoint J-P, Quillien L, Branlard G, Marion D, 1998b. Effect of puroindolines on the bread making properties of wheat flour. Cereal Chem 75: 222–229.

  32. Evrard A, Meynard D, Guiderdoni E, Joudrier P, Gautier M-F, 2007. The promoter of the wheat puroindoline-a gene (PinA) exhibits a more complex pattern of activity than that of thePinB gene and is induced by wounding and pathogen attack in rice. Planta 255: 287–300.

  33. Faize M, Sourice S, Dupuis F, Parisi L, Gautier M-F, Chevreau E, 2004. Expression of wheat puroindoline-b reduces scab susceptibility in transgenic apple (Malus × domestica Borkh.). Plant Sci 167: 347–354.

  34. Galanade AA, Tiwari R, Ammiraju JSS, Santra DK, Lagu MD, Rao VS, et al. 2001. Genetic analysis of kernel hardness in bread wheat using PCR-based markers. Theor Appl Genet 103: 601–606.

  35. Gautier M-F, Aleman M-E, Guirao A, Marion D, Joudrier P, 1994.Triticum aestivum puroindolines, two basic cysteine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol 25: 43–57.

  36. Gautier M-F, Cosson P, Guirao A, Alary R, Joudrier P, 2000. Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploidTriticum species. Plant Sci 153: 81–91

  37. Gazza L, Nocente F, Ng PKW, Pogna NE, 2005. Genetic and biochemical analysis of common wheat cultivars lacking puroindoline a. Theor Appl Genet 110: 470–478.

  38. Gazza L, Conti S, Taddei F, Pogna NE, 2006. Molecular characterization of puroindolines and their encoding genesin Aegilops ventricosa. Mol Breed 17: 191–200.

  39. Gazza L, Taddei F, Corbellini M, Cacciatori P, Pogna NE, 2008. Genetic and environmental factors affecting grain texture in common wheat. J Cereal Sci 47: 52–58.

  40. Gedye KR, Morris CF, Bettge AD, 2004. Determination and evaluation of the sequence and textural effects of the puroindoline a and b genes in a population of synthetic hexaploid wheat. Theor Appl Genet 109: 1597–1603.

  41. Giroux MJ, Morris CF, 1997. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet 95: 857–864.

  42. Giroux MJ, Morris CF, 1998. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc Natl Acad Sci USA 95: 6262–6266.

  43. Giroux MJ, Talbert L, Habernicht DK, Lanning S, Hemphill A, Martin JM, 2000. Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci 40: 370–374.

  44. Giroux MJ, Sripo T, Gerhardt S, Sherwood J, 2003. Puroindolines: Their role in grain hardness and plant defense. In: Harding SE, ed. Biotechnology and Genetic Engineering Reviews 20: 277–290. Intercept, Andover, Hampshire, UK.

  45. Greenblatt GA, Bettge AD, Morris CF, 1995. The relationship among endosperm texture, friabilin occurrence, and bound polar lipids on wheat starch. Cereal Chem 72: 172–176.

  46. Greenwell P, Schofield JD, 1986. A starch granule protein associated with endosperm softness in wheat. Cereal Chem 63: 379–380.

  47. Guo SH, He ZH, Xia LQ, Wang HG, Zhang QZ, 2004. Detection of allelic variation for grain hardness in Chinese spring wheat by STS marker. Sci Agric Sin 37: 1797–1803.

  48. Hogg AC, Sripo T, Beecher B, Martin JM, Giroux MJ, 2004. Wheat puroindolines interact to form friabilin and control wheat grain hardness. Theor Appl Genet 108: 1089–1097.

  49. Igrejas G, Gaborit T, Oury F-X, Chiron H, Marion D, Branlard G, 2001. Genetic and environmental effects on puroindoline-a and puroindoline-b content and their relationship to technological properties in French bread wheats. J Cereal Sci 34: 37–47.

  50. Igrejas G, Leroy P, Charmet G, Gaborit T, Marion D, Branlard G, 2002. Mapping QTLs for grain hardness and puroindoline content in wheat (Triticum aestivum L.). Theor Appl Genet 106: 19–27.

  51. Ikeda TM, Ohnishi N, Nagamine T, Oda S, Hisatomi T, Yano H, 2005. Identification of new puroindoline genotypes and their relationship to flour texture among wheat cultivars. J Cereal Sci 41: 1–6.

  52. Jing W, Demcoe AR, Vogel AJ, 2003. Conformation of a bactericidal domain of puroindoline a: structure and mechanism of action of a 13-residue antimicrobial peptide. J Bacteriol 185: 4938–4947.

  53. Jolly CJ, Rahman S, Kortt AA, Higgins TJV, 1993. Characterization of the wheat Mr 15000 “grain-softness protein” and analysis of the relationship between its accumulation in the whole seed and grain softness. Theor Appl Genet 86: 589–597.

  54. Krishnamurthy K, Balconi C, Sherwood JE, Giroux MJ, 2001a. Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol Plant Microbe In 14: 1255–1260.

  55. Krishnamurthy K, Giroux MJ, 2001b. Expression of wheat puroindoline genes in transgenic rice enhances grain softness. Nat Biotechnol 19: 162–166.

  56. Lawrence RJ, Pikaard CS, 2003. Transgene-induced RNA interference: a strategy for overcoming gene redundancy in polyploids to generate loss-of-function mutations. Plant J 36: 114–121.

  57. Li G, He Z, Pena RJ, Xia X, Lillemo M, Qixin S, 2006. Identification of novel secaloindoline-a and secaloindoline-b alleles in CIMMYT hexaploid triticale lines. J Cereal Sci 43: 378–386.

  58. Li W, Li H, Gill BS, 2008. Recurrent deletions of puroindoline genes At the grain Hardness locus in four independent lineages of polyploid wheat. Plant Physiol 146: 200–212.

  59. Lillemo M, Morris CF, 2000. A leucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe. Theor Appl Genet 100: 1100–1107.

  60. Lillemo M, Ringlund K, 2002. Impact of puroindoline b alleles on the genetic variation for hardness in soft × hard wheat crosses. Plant Breed 121: 210–217.

  61. Lillemo M, Simeone MC, Morris CF, 2002. Analysis of puroindoline a and b sequences fromTriticum aestivum cv. “Penawawa” and related diploid taxa. Euphytica 126: 321–331.

  62. Luo L, Zhang J, Yang G, Li Y, Kexiu L, He G, 2008. Expression of puroindoline a enhances leaf rust resistance in transgenic tetraploid wheat. Mol Biol Rep 35: 195–200.

  63. Martin CR, Rousser R, Brabec DL, 1993. Development of a single-kernel wheat characterization system. Transactions of the ASAE 36: 1399–1404.

  64. Martin JM, Frohberg RC, Morris CF, Talbert LE, Giroux MJ, 2001. Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci 41: 228–234.

  65. Martin J, Meyer F, Smidansky E, Wanjugi H, Blechl A, Giroux MJ, 2006. Complementation of the pina (null) allele with the wild typePina sequence restores a soft phenotype in transgenic wheat. Theor Appl Genet 113: 1563–1570.

  66. Massa AN, Morris CF, Gill BS, 2004. Sequence diversity of puroindoline-a, puroindoline-b, and the grain softness protein inAegilops tauschii Coss. Crop Sci 44: 1808–1816.

  67. McFadden ES, Sears ER, 1946. The origin ofTriticum spelta and its free-threshing hexaploid relatives. J Hered 37: 81–89, 107–116.

  68. McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Anderson OD, 2005. Catalogue of gene symbols for wheat: 2005 supplement.

  69. McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Somers DJ, Anderson OA, 2007. Catalogue of gene symbols for wheat: 2007 supplement.

  70. Morris CF, Bhave M, 2008. Reconciliation of D-genome puroindoline allele designations with current DNA sequence data. J Cereal Sci 48: 277–287.

  71. Morris CF, Greenblatt GA, Bettge AD, Malkawi HI, 1994. Isolation and characterization of multiple forms of friabilin. J. Cereal Sci 21: 167–174.

  72. Morris CF, King GE, Allan RE, Simeone MC, 2001a. Identification and characterization of near-isogenic hard and soft hexaploid wheats. Crop Sci 41: 211–217.

  73. Morris CF, Lillemo M, Simeone MC, Giroux MJ, Babb SL, Kidwell KK, 2001b. Prevalence of puroindoline grain hardness genotypes among North American spring and winter wheats. Crop Sci 41: 218–228.

  74. Morris CF, 2002. Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol 48: 633–647.

  75. Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, et al. 2000. QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100: 1167–1175.

  76. Pogna NE, Gazza L, Korona V, Zanier R, Niglio A, Mei E, et al. 2002. Puroindolines and kernel hardness in wheat species. In: Ng PKW and Wrigley CW, eds. Wheat Quality Elucidation. AACC, St. Paul, Minnesota, USA, pp. 155–169.

  77. Rakszegi M, Wilkinson MD, Tosi P, Lovergrove A, Kovacs G, Bedo Z, Shewry PR, 2008. Puroindoline genes and proteins in tetraploid and hexaploid species ofTriticum. J Cereal Sci, doi:10.1016/j.jcs.2008.09.006.

  78. Ram S, Jain N, Shoran J, Singh R, 2005. New frame shift mutation in puroindoline b in Indian wheat cultivars Hyb65 and NI5439. J Plant Biochem Biotechnol 14: 45–48.

  79. Shewry PR, Jenkins J, Beaudoin F, Mills ENC, 2004. The classification, functions and evolutionary relationship of plant proteins in relation to food allergens. In: Mills ENC, Shewry PR eds. Plant food allergens. Blackwell Science, Oxford, pp. 24–41.

  80. Simeone MC, Lafiandra D, 2005. Isolation and characterization of friabilin genes in rye. J Cereal Sci 41: 115–122.

  81. Slaughter DC, Norris KH, Hruschka WR, 1992. Quality and classification of hard red wheat. Cereal Chem 69: 428–432.

  82. Sourdille P, Perretant MR, Charmet G, Leroy P, Gautier M-F, Jourdier P, et al. 1996. Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor Appl Genet 93: 580–586.

  83. Swan CG, Meyer FD, Hgg AC, Martin JM, Giroux, MJ, 2006. Puroindoline b limits binding of puroindoline a to starch and grain softness. Crop Sci 46: 1656–1665.

  84. Symes KJ, 1965. The inheritance of grain hardness in wheat as measured by particle size index. Aust J Agric Res 16: 113–123.

  85. Tanchak MA, Schernthaner JP, Giband M, Altosaar I, 1998. Tryptophanins: isolation and molecular characterization of oat cDNA clones encoding proteins structurally related to puroindoline and wheat grain softness proteins. Plant Sci 137: 173–184.

  86. Tranquilli G, Heaton J, Chicaiza O, Dubcovsky J, 2002. Substitutions and deletions of genes related to grain hardness in wheat and their effect on grain texture. Crop Sci 42: 1812–1817.

  87. Turnbull KM, Gaborit T, Marion D, Rahman S, 2000. Variation in puroindoline polypeptides in Australian wheat cultivars in relation to grain hardness. Aust J Plant Physiol 27: 153–158.

  88. Turnbull KM, Turner M, Mukai Y, Yamamoto M, Morell MK, Appels R, Rahman S, 2003. The organization of genes tightly linked to theHa locus inAegilops tauschii, the D-genome donor to wheat. Genome 46: 330–338.

  89. Turner AS, Bradburne RP, Fish L, Snape JW, 2004. New quantitative trait loci influencing grain texture and protein content in bread wheat. J Cereal Sci 40: 51–60.

  90. Weightman RM, Millar S, Alava J, Foulkes MJ, Fish L, Snape JW, 2008. Effects of drought and the presence of the 1BL/1RS translocation on grain vitreosity, hardness and protein content in winter wheat. J Cereal Sci 47: 457–468.

  91. Wilde PJ, Clark DC, Marion D, 1993. Influence of competitive adsorption of a lysopalmitoyl-phosphatidylcholine on the functional properties of puroindoline, a lipid-binding protein isolated from wheat flour. J Agric Food Chem 41: 1570–1576.

  92. Wiley PR, Tosi P, Evrard A, Lovergrove A, Jones HD, Shewry PR, 2007. Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endosperm cells of wheat grain. Plant Mol Biol 64: 125–136.

  93. Wilkinson M, Wan Y, Tosi P, Leverington M, Snape J, Mitchell RAC, Shewry PR, 2008. Identyfication and genetic mapping of variant forms of puroindoline b expressed in developing wheat grain. J Cereal Sci 48: 722–728.

  94. Xia L, Chen F, He Z, Chen X, Morris CF, 2005. Occurrence of puroindoline alleles in Chinese winter wheats. Cereal Chem 82: 38–43.

  95. Xia L, Geng H, Chen X, He Z, Lillemo M, Morris CF, 2008. Silencing of puroindoline a alters the kernel texture in transgenic bread wheat. J Cereal Sci 47: 331–338.

  96. Ziemann M, Ramalingam A, Bhave M, 2008. Evidence of physical interactions of puroindoline proteins using the yeast two-hybrid system. Plant Sci 175: 307–313.

Download references

Author information

Correspondence to A. Nadolska-Orczyk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nadolska-Orczyk, A., Gasparis, S. & Orczyk, W. The determinants of grain texture in cereals. J Appl Genet 50, 185–197 (2009).

Download citation


  • grain hardness
  • puroindoline proteins
  • Pin mutations
  • puroindoline gene modifications
  • Triticum sp