Advertisement

Journal of Applied Genetics

, Volume 50, Issue 2, pp 109–123 | Cite as

Comparison of skeletal muscle transcriptional profiles in dairy and beef breeds bulls

  • T. Sadkowski
  • M. Jank
  • L. Zwierzchowski
  • J. Oprządek
  • T. Motyl
Original Article

Abstract

A cDNA microarray (18 263 probes) was used for transcriptome analysis of bovine skeletal muscle (m. semitendinosus) in 12-month-old bulls of the beef breed Limousin (LIM) and the typical dairy breed Holstein-Friesian (HF, used as a reference). We aimed to identify the genes whose expression may reflect the muscle phenotype of beef bulls. A comparison of muscle transcriptional profiles revealed significant differences in expression of 393 genes between HF and LIM. We classified biological functions of 117 genes with over 2-fold differences in expression between the examined breeds. Among them, 72 genes were up-regulated and 45 genes were down-regulated in LIM vs. HF. The genes were involved in protein metabolism and modifications (22 genes), signal transduction (15), nucleoside, nucleotide and nucleic acid metabolism (13), cell cycle (9), cell structure and motility (9), developmental processes (9), intracellular protein traffic (7), cell proliferation and differentiation (6), cell adhesion (6), lipid, fatty acid and steroid metabolism (5), transport (5), and other processes. For the purpose of microarray data validation, we randomly selected 4 genes:trip12, mrps30, pycrl, andc-erbb3. Real-time RT-PCR results showed similar trends in gene expression changes as those observed in microarray studies. Basing on results of the present study, we proposed a model of the regulation of skeletal muscle growth and differentiation, with a principal role of the somatotropic pathway. It may explain at least in part the development of muscle phenotype in LIM bulls. We assume that the growth hormone directly or indirectly (through IGF-1) activates the calcium-signaling pathway with calcineurin, which stimulates myogenic regulatory factors (MRFs) and inhibits early growth response gene. The inhibition results in indirect activation of MRFs and impaired activation of TGF-beta1 and myostatin, which finally facilitates terminal muscle differentiation.

Keywords

microarray skeletal muscle Limousin Holstein-Friesian cattle gene expression transcriptional profile transcriptome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barendse W, Bunch R, Thomas M, Armitage S, Baud S, Donaldson N, 2004. TheTG5 thyroglobulin gene test for a marbling quantitative trait loci evaluated in feedlot cattle. Aust J Exp Agr 44: 669–674.CrossRefGoogle Scholar
  2. Beauchemin VR, Thomas MG, Franke DE, Silver GA, 2006. Evaluation of DNA polymorphisms involving growth hormone relative to growth and carcass characteristics in Brahman steers. Genet Mol Res 5: 438–447.PubMedGoogle Scholar
  3. Blachowski S, Motyl T, Grzelkowska K, Kasterka M, Orzechowski A, Interewicz B, 1994. Involvement of polyamines in epidermal growth factor (EGF), transforming growth factor (TGF)-alpha and -beta1 action on culture of L6 and fetal bovine myoblasts. Int J Biochem 26: 891–897.CrossRefPubMedGoogle Scholar
  4. Borland CA, Barber MC, Travers MT, Vernon RG, 1994. Growth hormone inhibition of lipogenesis in sheep adipose tissue: requirement for gene transcription and polyamines. J Endocrinol 142: 235–243.CrossRefPubMedGoogle Scholar
  5. Budasz-Świderska M, Jank M, Motyl T, 2005. Transforming growth factor-beta1 upregulates myostatin expression in mouse C2C12 myoblasts. J Physiol Pharmacol 56 Suppl 3: 195–214.Google Scholar
  6. Byrne KA, Wang YH, Lehnert SA, Harper GS, Mc William SM, Bruce HL, Reverter A, 2005. Gene expression profiling of muscle tissue in Brahman steers during nutritional restriction. J Anim Sci 83: 1–12.PubMedGoogle Scholar
  7. Casas E, White SN, Wheeler TL, Shackelford SD, Koohmaraie M, Riley DG, et al. 2006. Effects of calpastatin and mu-calpain markers in beef cattle on tenderness traits. J Anim Sci 84: 520–525.CrossRefPubMedGoogle Scholar
  8. Cassar-Malek I, Passelaigue F, Bernard C, Léger J, Hocquette JF, 2007. Target genes of myostatin loss-of-function in muscles of late bovine fetuses. BMC Genomics 8: 63.CrossRefPubMedGoogle Scholar
  9. Chambaz Z, Scheeder MRL, Kreuzer M, Dufer P-A, 2003. Meat quality of Angus, Simmental, Charolaise, Limousin steers compared at the same level of intramuscular fat. Meat Sci 63: 491–500.CrossRefGoogle Scholar
  10. Coffey SG, 2007. Prospects for improving the nutritional quality of dairy and meat products. Forum Nutr 60: 183–195.CrossRefPubMedGoogle Scholar
  11. Dekkers JCM, 2004. Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J Anim Sci 82: 313–328.Google Scholar
  12. Dvorak N, 1991. Opportunities for marketing Holstein beef. In: The Proceedings of the Holstein Beef Production Symposium. Northeast Regional Agricultural Engineering Service, Cooperative Extension, Ithaca, NY: 1–5.Google Scholar
  13. Dymnicki E, Oprządek J, Reklewski Z, Słoniewski K, Oprządek A, Krzyżewski J, 2001. Growth rate, feed intake and feed conversion in fattening bulls of main beef breeds kept in Poland. Anim Sci Pap Rep 19: 231–239.Google Scholar
  14. Flisikowski K, Oprządek J, Dymnicki E, Zwierzchowski L, 2003. New polymorphism in the bovineSTAT5 A gene and its association with meat production traits in beef and dairy cattle. Anim Sci Pap Rep 21: 147–157.Google Scholar
  15. Florini JR, Ewton DZ, Coolican SA, 1996. Growth hormone and the insulin-like growth factor system in myogenesis. Endocrine Rev 17: 481–517.Google Scholar
  16. Foulstone EJ, Savage PB, Crown AL, Holly JMP, Stewart CEH, 2003. Role of insulin-like growth factor binding protein-3 (IGFBP-3) in the differentiation of primary human adult skeletal myoblasts. J Cell Physiol 195: 70–79.CrossRefPubMedGoogle Scholar
  17. Friday BB, Mitchell PO, Kegle KM, Pavlath GK, 2003. Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD. Differentiation 71: 217–227.CrossRefPubMedGoogle Scholar
  18. Gao Y, Zhang R, Hu X, Li N, 2007. Application of genomic technologies to the improvement of meat quality of farm animals. Meat Sci 77: 36–45.CrossRefGoogle Scholar
  19. Glass DJ, 2005. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37: 1974–1984.PubMedGoogle Scholar
  20. Gritli-Linde A, Bjorkman U, Holm I, Tornell J, Linde A, 1997. Effects of chronically elevated growth hormone levels on polyamine metabolism in elderly transgenic mice. Mol Cell Endocrinol 126: 49–58.CrossRefPubMedGoogle Scholar
  21. Grochowska R, Gajewska A, Snochowski M, Zwierzchowski L, 2002. Ligand-binding activity of growth hormone receptor (GH-R) in bulls of different breeds with identified GH-R genotypes. J Anim Feed Sci 11: 223–236.Google Scholar
  22. Grochowska R, Lundén A, Zwierzchowski L, Snochowski M, Oprządek J, 2001. Association between gene polymorphism of growth hormone and carcass traits in dairy bulls. Anim Sci 72: 441–447.Google Scholar
  23. Grzelkowska K, Motyl T, Blachowski S, Kasterka M, 1993. Metabolic effect of orotic acid in rat L6 myoblasts. Endocrine Regul 27: 133–138.Google Scholar
  24. Grzelkowska K, Motyl T, Malicka E, Ostrowski J, Trzeciak L, Filipecki M, 1995. Effect of orotic acid on TGF-beta1-induced growth inhibition of L1210 leukemic cells. Int J Hematol 61: 23–33.CrossRefPubMedGoogle Scholar
  25. Grzelkowska K, Motyl T, Ostrowski J, Trzeciak L, 1995. The effect of OA on proliferation and polyamine metabolism of K 562 leukemic cells and their responsiveness to natural killer cell activity. Int J Hematol 61: 147–156.CrossRefPubMedGoogle Scholar
  26. Harper GS, 1999. Trends in skeletal muscle biology and the understanding of toughness in beef. Aust J Agric Res 50: 1105–1129.CrossRefGoogle Scholar
  27. Hocquette JF, Renard G, Levéziel H, Picard B, Cassar-Malek I, 2006. The potential benefits of genetics and genomics to improve beef quality — a review. Anim Sci Pap Rep 24: 173–186.Google Scholar
  28. Hocquette JF, Lehnert S, Barendse W, Cassar-Malek I, Picard B, 2007. Recent advances in cattle functional genomics and their application to beef quality. Animal 1: 159–173.CrossRefGoogle Scholar
  29. Hodge C, Liao J, Stofega M, Guan K, Carter-Su C, Schwartz J, 1998. Growth hormone stimulates phosphorylation and activation of Elk-1 and expression of c-fos, egr-1 and junB through activation of extracellular signal-regulated kinases 1 and 2. J Biol Chem 273: 31327–31336.CrossRefPubMedGoogle Scholar
  30. Iwaki K, Sukhatme VP, Shubeita HE, Chien KR, 1990. Alpha- and beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. J Biol Chem 265: 13809–13817.PubMedGoogle Scholar
  31. Jank M, Zwierzchowski L, Siadkowska E, Budasz-Świderska M, Sadkowski T, Oprządek J, Motyl T, 2006. Polymorphism in the 5’flanking region of the myostatin gene affects myostatin and TGF-b1 expression in bovine skeletal muscle. J Anim Feed Sci 15: 381–391.Google Scholar
  32. Juszczuk-Kubiak E, Rosochacki j, Wicińska K, Szreder T, Sakowski T, 2004a. A novel RFLP/AluI polymorphism of the bovine calpastatin (CAST) gene and its association with selected traits of beef. Anim Sci Pap Rep 22: 195–204.Google Scholar
  33. Juszczuk-Kubiak E, Sakowski T, Flisikowski K, Wicińska K, Oprzadek J, Rosochacki S, 2004b. Bovine μ-calpain (CAPN1) gene: new SNP within intron 14. J Appl Genet 45: 457–460.PubMedGoogle Scholar
  34. Klover P, Hennighausen L, 2007. Postnatal body growth is dependent on the transcription factors signal transducers and activators of transcription 5a/b in muscle: a role for autocrine/paracrine insulin-like growth factor I. Endocrinology 148: 1489–1497.CrossRefPubMedGoogle Scholar
  35. Kölle S, Stojkovic M, Prelle K, Waters M, Wolf E, Sinowatz F, 2001. Growth hormone (GH)/GH receptor expression and GH-mediated effects during early bovine embryogenesis. Biol Reprod 64: 1826–1834.CrossRefPubMedGoogle Scholar
  36. Kononoff PJ, Deobald HM, Stewart EL, Laycock AD, Marquess FL, 2005. The effect of a leptin single nucleotide polymorphism on quality grade, yield grade, and carcass weight of beef cattle. J Anim Sci 83: 927–932.PubMedGoogle Scholar
  37. Lefaucheur L, Le Dividich J, Mourot J, Monin G, Ecolan P, Krauss D, 1991. Influence of environmental temperature on growth, muscle and adipose tissue metabolism, and meat quality in swine. J Anim Sci 69: 2844–2854.PubMedGoogle Scholar
  38. Lehnert SA, Reverter A, Byrne KA, Wang Y, Nattrass GS, Hudson NJ, Greenwood PL, 2007. Gene expression studies of developing bovine longissimus muscle from two different beef cattle breeds. BMC Dev Biol 16: 95.CrossRefGoogle Scholar
  39. Listrat A, Hocquette JF, Picard B, Ménissier F, Djiane J, Jammes H, 2005. Growth hormone receptor gene expression in the skeletal muscle of normal and double-muscled bovines during foetal development. Reprod Nutr Dev 45: 393–403.CrossRefPubMedGoogle Scholar
  40. Liu C, Yao J, de Belle I, Huang R-P, Adamson E, Mercola D, 1999. The transcription factor EGR-1 suppresses transformation of human fibrosarcoma HT 1080 cells by coordinated induction of transforming growth factor-beta-1, fibronectin, and plasminogen activator inhibitor-1. J Biol Chem 274: 4400–4411.CrossRefPubMedGoogle Scholar
  41. Liu W, Thomas SG, Asa SL, Gonzales-Cadavid N, Bhasin S, Ezzat S, 2003. Myostatin is a skeletal muscle target of growth hormone anabolic action. J Clin Endocrinol 88: 5490–5496.CrossRefGoogle Scholar
  42. Lonergan SM, Ernst CW, Bishop MD, Calkins CR, Koohmaraie M, 1995. Relationship of restriction fragment length polymorphism (RFLP) at the bovine calpastatin locus to calpastatin activity and meat tenderness. J Anim Sci 73: 3608–3612.PubMedGoogle Scholar
  43. Lucy MC, Boyd CK, Koenigsfeld AT, Okamura CS, 1998. Expression of somatotropin receptor messenger ribonucleic acid in bovine tissues. J Dairy Sci 81: 1889–1895.CrossRefPubMedGoogle Scholar
  44. Maj A, Zwierzchowski L, Oprządek J, Oprządek A, Dymnicki E, 2004. Polymorphism in the 5’-noncoding region of the bovine growth hormone receptor gene and its association with meat production traits in cattle. Anim Res 53: 503–514.CrossRefGoogle Scholar
  45. Maj A, Zwierzchowski L, Oprządek J, Dymnicki E, 2006. Polymorphism in the 5’-noncoding region of the bovine growth hormone receptor gene and its association with meat production traits in Black-and-White cattle. Meat Sci 72: 539–544.CrossRefGoogle Scholar
  46. Monson F, Sanudo C, Sierra I, 2004. Influence of cattle breed and ageing time on textural meat quality. Meat Sci 80: 3077–3085.Google Scholar
  47. Moseley WM, Paulissen JP, Goodwin MC, Alaniz GR, Clafin WH, 1992. Recombinant bovine somatotropin improves growth performance in finishing beef steers. J Anim Sci 70: 412–425.PubMedGoogle Scholar
  48. Motyl T, Kasterka M, Grzelkowska K, Blachowski S, Sysa P, 1993. TGF-beta1 inhibits polyamine biosynthesis in K562 leukemic cells. Ann Hematol 67: 285–288.CrossRefPubMedGoogle Scholar
  49. Motyl T, Kasterka M, Grzelkowska K, Ostrowski J, Filipecki M, Malicka E, Płoszaj T, 1996. Phorbol ester (12-O-tetradecanoylphorbol 13-acetate) prevents ornithine decarboxylase inhibition and apoptosis in L1210 leukemic cells exposed to TGFbeta1. Int JBiochem Cell Biol 28: 1327–1335.CrossRefGoogle Scholar
  50. Mullen AM, Stapleton PC, Corcoran D, Hamill RM, White A, 2006. Understanding meat quality through the application of genomic and proteomic approaches. Meat Sci 74: 3–16.CrossRefGoogle Scholar
  51. Nkrumah JD, Li C, Yu J, Hansen C, Keisler DH, Moore SS, 2005. Polymorphisms in the bovine leptin promoter associated with serum leptin concentration, growth, feed intake, feeding behavior, and measures of carcass merit. J Anim Sci 83: 20–28.PubMedGoogle Scholar
  52. Oprządek J, Dymnicki E, Oprządek A, Słoniewski K, Sakowski T, Reklewski Z, 2001. A note on the effect of breed on beef cattle the carcass traits. Anim Sci Pap Rep 19: 79–89.Google Scholar
  53. Oprządek J, Dymnicki E, Reklewski Z, 2007. Zmiany tempa wzrostu i składu tkankowego tuszy młodego bydła w zależnoćci od rasy [Growth rates and carcass composition of young cattle of different breeds]. Roczniki Naukowe PTZ 3: 25–31.Google Scholar
  54. Page BT, Casas E, Quaas RL, Thallman RM, Wheeler TL, Shackelford SD, et al. 2004. Association of markers in the bovineCAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires. J Anim Sci 8: 3474–3481.Google Scholar
  55. Płoszaj T, Motyl T, Zimowska W, Skierski J, Zwierzchowski L, 2000. Inhibition of ornithine decarboxylase by alpha-difluoromethylornithine induces apoptosis of HC11 mouse mammary epithelial cells. Amino Acids 19: 483–496.CrossRefPubMedGoogle Scholar
  56. Polanski A, Kimmel M, 2007. Bioinformatics. Springer Verlag: Berlin.Google Scholar
  57. Potts JK, Echternkamp SE, Smith TP, Reecy JM, 2003. Characterization of gene expression in double-muscled and normal-muscled bovine embryos. Anim Genet 34: 438–444.CrossRefPubMedGoogle Scholar
  58. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, et al. 2001. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nature Cell Biol 3: 1009–1013 doi:10.1038/ncb1 101-1009.CrossRefPubMedGoogle Scholar
  59. Rosochacki S, Kubiak-Juszczuk E, Bartoń L, Sakowski T, Połoszynowicz J, Baranowski A, Matejczyk M, 2008. Preliminary observations upon relation between the G77A polymorphism inCATD gene and lysosomal proteinases activity and sensory traits of meat from bulls of three breeds. Anim Sci Pap Rep 26: 25–35.Google Scholar
  60. Sadkowski T, Jank M, Zwierzchowski L, Siadkowska E, Oprządek J, Motyl T, 2008. Gene expression profiling in skeletal muscle of Holstein Friesian bulls with single nucleotide polymorphism in myostatin gene 5’flanking region. J Appl Genet 49: 237–250.PubMedGoogle Scholar
  61. Sadkowski T, Jank M, Oprządek J, Motyl T, 2006. Age-dependent changes in bovine skeletal muscle transcriptomic profile. J Physiol Pharmacol. 57: 95–110.PubMedGoogle Scholar
  62. Salih DAM, Tripathi G, Holding C, Szestak TAM, Gonzalez MI, Carter EJ, et al. 2004. Insulin-like growth factor-binding protein 5 (Igfbp5) compromises survival, growth, muscle development, and fertility in mice. PNAS 101: 4314–4319.CrossRefPubMedGoogle Scholar
  63. Schenkel FS, Miller SP, Ye X, Moore SS, Nkrumah JD, Li C, et al. 2005. Association of single nucleotide polymorphisms in the leptin gene with carcass and meat quality traits of beef cattle. J Anim Sci 83: 2009–2020.PubMedGoogle Scholar
  64. Schenkel FS, Miller SP, Jiang Z, Mandell IB, Ye X, Li H, Wilton JW, 2006. Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. J Anim Sci 84: 291–299.PubMedGoogle Scholar
  65. Schlegel ML, Bergen WG, Schroeder AL, VandeHaar MJ, Rust SR, 2006. Use of bovine somatotropin for increased skeletal and lean tissue growth of Holstein steers. J Anim Sci 84: 1176–1187.PubMedGoogle Scholar
  66. Suchyta SP, Sipkovsky S, Kruska R, Jeffers A, McNulty A, Coussens MJ, et al. 2003. Development and testing of a high-density cDNA microarray resource for cattle. Physiol Genomics 15: 158–164.PubMedGoogle Scholar
  67. Sudre K, Leroux C, Piétu G, Cassar-Malek I, Petit E, Listrat A, et al. 2003. Transcriptome analysis of two bovine muscles during ontogenesis. J Biochem 133: 745–756.CrossRefPubMedGoogle Scholar
  68. Świtoński M, 2008. Postêpy genomiki zwierząt domowych [Progress in genomics of livestock animals]. Nauka 1: 27–43.Google Scholar
  69. Tatsuda K, Oka A, Iwamoto E, Kuroda Y, Takeshita H, Kataoka H, Kouno S, 2008. Relationship of the bovine growth hormone gene to carcass traits in Japanese black cattle. J Anim Breed Genet 125: 45–49.CrossRefPubMedGoogle Scholar
  70. Thaller G, Kuhn C, Winter A, Ewald G, Bellmann O, Wegner J, et al. 2003. DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Anim Genet 34: 354–357.CrossRefPubMedGoogle Scholar
  71. Thomas PD, Kejariwal A, Campbell MJ, Mi H, Diemer K, Guo N, et al. 2003. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nuc Acids Res 31: 334–341.CrossRefGoogle Scholar
  72. Tourtellotte WG, Keller-Peck C, Milbrandt J, Kucera J, 2001. The transcription factor Egr3 modulates sensory axon-myotube interactions during muscle spindle morphogenesis. Develop Biol 232: 388–399.CrossRefPubMedGoogle Scholar
  73. Van Eenennaam AL, Li J, Thallman RM, Quaas RL, Dikeman ME, Gill CA, et al. 2007. Validation of commercial DNA tests for quantitative beef quality traits. J Anim Sci 85: 891–900.CrossRefPubMedGoogle Scholar
  74. Velayudhan BT, Govoni KE, Hoagland TA, Zinn SA, 2007. Growth rate and changes of the somatotropic axis in beef cattle administered exogenous bovine somatotropin beginning at two hundred, two hundred fifty, and three hundred days of age. J Anim Sci 85: 2866–2872.CrossRefPubMedGoogle Scholar
  75. Velloso CP, 2008. Regulation of muscle mass by growth hormone and IGF-1. Br J Pharmacol 154: 557–568.CrossRefPubMedGoogle Scholar
  76. Vyas DR, Spangenburg EE, Abraha TW, Childs TE, Booth FW, 2002. GSK-3beta negatively regulates skeletal myotube hypertrophy. Am J Physiol Cell Physiol 283: C545–551.PubMedGoogle Scholar
  77. Wang YH, Byrne KA, Reverter A, Harper GS, Taniguchi M, Mc William SM, Mannen H, Oyama K, Lehnert SA, 2005. Transcriptional profiling of skeletal muscle tissue from two breeds of cattle. Mamm Genome 16: 201–210.CrossRefPubMedGoogle Scholar
  78. Wheeler TL, Shackelford SD, Casas E, Cundiff CV, Koohmaraie M, 2002. The effects of Piedmontese inheritance and myostatin genotype on the palatability of longissimus thoracis, gluteus medius, semimembranosus, and biceps femoris. J Anim Sci 79: 3069–3074.Google Scholar
  79. White SN, Casas E, Wheeler TL, Shackelford SD, Koohmarale M, Riley DG, et al. 2005. A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle ofBos indicus, Bos taurus and crossbred descent. J Anim Sci 83: 2001–2008.PubMedGoogle Scholar
  80. Yu SL, Chung HJ, Sang BC, Park CS, Lee JH, Yoon DH, et al. 2007. Identification of differentially expressed genes in distinct skeletal muscles in cattle, using cDNA microarray. Anim Biotechnol 18: 275–285.CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2009

Authors and Affiliations

  • T. Sadkowski
    • 1
  • M. Jank
    • 1
  • L. Zwierzchowski
    • 2
  • J. Oprządek
    • 2
  • T. Motyl
    • 1
  1. 1.Department of Physiological Sciences, Faculty of Veterinary MedicineWarsaw University of Life Sciences (SGGW)WarsawPoland
  2. 2.Institute of Genetics and Animal BreedingPolish Academy of SciencesJastrzêbiecPoland

Personalised recommendations