Journal of Applied Genetics

, Volume 49, Issue 4, pp 433–441 | Cite as

Wheat-infectingFusarium species in Poland — their chemotypes and frequencies revealed by PCR assay

  • Łukasz StępieńEmail author
  • Delfina Popiel
  • Grzegorz Koczyk
  • Jerzy Chełkowski
Original Article


ThreeFusarium species:F. graminearum, F. culmorum andF. cerealis were identified in laboratory cultures and in sporodochia from spikelets of scabby wheat. SCAR (sequence characterized amplified region) primers were used to identifyFusarium species and nivalenol (NIV) and deoxynivalenol (DON) chemotypes within species in laboratory cultures and field collected heads harvested in 2006. Results from PCR analyses confirmed preliminary identifications of species on the basis of examination of macroconidia under a light microscope and identification of cultures on agar media. NIV and DON (3Ac-DON and 15Ac-DON) chemotypes were identified using PCR assay. Among samples and isolates ofF. graminearum, the 15Ac-DON chemotype dominated, and among those whereF. culmorum was identified, the 3Ac-DON chemotype prevailed. Only 5 of the 41 isolates ofF. graminearum tested, displayed the NIV chemotype. An increase in the frequency ofF. graminearum and a decrease in the frequency ofF. culmorum were found during 1998 to 2006.


deoxynivalenol Fusarium species nivalenol wheat head blight chemotypes SCARs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler A, Lew H, Brunner S, Oberforster M, Hinterholzer J, Kulling-Gradinger CM, et al. 2002.Fusaria in Austrian cereals — change in species and toxins spectrum. J Appl Genet 43A: 11–16.Google Scholar
  2. Aoki T, O’Donnell K, 1999. Morphological andmolecular characterization ofFusarium pseudograminearum sp.nov., formerly recognized as the group 1 population ofF. graminearum and PCR primers for its identification. Mycologia 91: 597–609.CrossRefGoogle Scholar
  3. Arseniuk E, Foremska E, Góral T, Chełkowski J, 1999.Fusarium head blight reactions and accumulation of deoxynivalenol (DON) and some of its derivatives in kernels of wheat, triticale and rye. J Phytopathol 147: 577–590.CrossRefGoogle Scholar
  4. Bai G, Shaner G, 1994. Scab of wheat: Prospects for control. Plant Dis 78: 760–765.CrossRefGoogle Scholar
  5. Bakan B, Giraud-Delville C, Pinson L, Richard-Molard D, Fournier E, Brygoo Y, 2002. Identification by PCR ofFusarium culmorum strains producing large and small amounts of deoxynivalenol. Appl Environ Microbiol 68: 5472–5479.CrossRefPubMedGoogle Scholar
  6. Bottalico A, 1998.Fusarium diseases of cereals, species complex and related mycotoxin profiles in Europe. J Plant Pathol 80: 85–103.Google Scholar
  7. Bottalico A, Perrone G, 2002. ToxigenicFusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur J Plant Pathol 108: 998–1003.CrossRefGoogle Scholar
  8. Chandler EA, Simpson DR, Thomsett MA, Nicholson P, 2003. Development of PCR assays toTri7 andTri13 trichothecene biosynthetic genes, and characterisation of chemotypes ofFusarium graminearum, Fusarium culmorum andFusarium cerealis. Physiol Mol Plant Pathol 62: 355–367.CrossRefGoogle Scholar
  9. Chełkowski J, 1998. Distribution of Fusarium species and their mycotoxins in cereal grains, in: Sinha KK, Bhatnagar D (Eds),Mycotoxins in Agriculture and Food Safety. New York, USA, Marcel Dekker Inc: 45–64.Google Scholar
  10. Chełkowski J, Bateman GL, Mirocha CJ, 1999. Identification of toxigenicFusarium species using PCR assays. J Phytopathol 147: 307–311.Google Scholar
  11. Chełkowski J, Witkowska I, 1999. Fungal pathogens of cereals, their identification and studies on genetic diversity using polymerase chain reaction (PCR). Post Nauk Roln 4: 49–60.Google Scholar
  12. Chełkowski J, Stępień Ł, Tomczak M, Wiśniewska H, 2002. Identification of toxigenicFusarium species in wheat ears using PCR assay and their mycotoxins in kernels. Phytopathol Pol 25: 47–57.Google Scholar
  13. Doohan FM, Parry DW, Jenkinson P, Nicholson P, 1998. The use of species-specific PCR-based assays to analyzeFusarium ear blight of wheat. Plant Pathol 47: 197–205.CrossRefGoogle Scholar
  14. Doohan FM, Parry DW, Nicholson P, 1999.Fusarium ear blight of wheat: the use of quantitative PCR and visual disease assessment in studies of disease control. Plant Pathol 48: 209–217.CrossRefGoogle Scholar
  15. Edwards SG, Pirgozliev SR, Hare MC, Jenkinson P, 2001. Quantification of trichothecene-producingFusarium species in harvested grain by competitive PCR to determine efficacies of fungicides against Fusarium head blight of winter wheat. Appl Environ Microbiol 67: 1575–80.CrossRefPubMedGoogle Scholar
  16. Guldener U, Mannhaupt G, Munsterkotter M, Haase D, Oesterheld M, Stumpflen V, et al. 2006. FGDB: a comprehensive fungal genome resource on the plant pathogenFusarium graminearum. Nucleic Acids Res 34(Database issue), D456–458.Google Scholar
  17. Jennings P, Coates ME, Turner JA, Chandler EA, Nicholson P, 2004. Determination of deoxynivalenol and nivalenol chemotypes of Fusarium culmorum isolates from England and Wales by PCR assay. Plant Pathol 53: 182–190.CrossRefGoogle Scholar
  18. Jones RK, Mirocha CJ, 1999. Quality parameters in small grains from Minnesota affected by Fusarium head blight. Plant Dis 83: 506–511.CrossRefGoogle Scholar
  19. Kimura M, Tokai T, Takahashi-Ando N., Oshato S, Fujimura M, 2007. Molecular and genetic studies ofFusarium trichothecene biosynthesis: pathways, genes and evolution. Biosci Biotechnol Biochem 71: 70183–1-19.Google Scholar
  20. Kwaśna H, Chełkowski J, Zajkowski P, 1991.Fusarium (Sierpik), in: Grzyby (Mycota), Wydawnictwo IB PAN, Warszawa-Kraków, Poland, vol XXII; 39–111.Google Scholar
  21. Langseth W, Elen O, 1996. Differences between barley, oats and wheat in the occurrence of deoxynivalenol and other trichothecenes in norwegian grain. J Phytopathol 144: 113–118.CrossRefGoogle Scholar
  22. Leslie JF, Summerell BA, 2006.The Fusarium laboratory manual. Blackwell Publishing, Iowa, USA, 1–388.CrossRefGoogle Scholar
  23. Łukanowski A, Sadowski C, 2002. Occurrence ofFusarium on grain and heads of winter wheat cultivated in organic, integrated, conventional systems and monoculture. J Appl Genet 43A: 69–74.Google Scholar
  24. McMullen M, Jones R, Gallenberg D, 1997. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81: 1340–1348.CrossRefGoogle Scholar
  25. Miller JD, 1994. Epidemiology ofFusarium ear diseases of cereals. In: Miller JD, Trenholm HL, eds. Mycotoxins in Grain. Eagan Press, St. Pant P, pp. 19–36.Google Scholar
  26. Miller JD, Young JC, 1985. Deoxynivalenol in experimentalFusarium graminearum infection of wheat. Can J Plant Pathol 7, 132–134.CrossRefGoogle Scholar
  27. Nelson PE, Toussoun TA, Marasas WFO, 1983.Fusarium species. An illustrated manual for identification. The Pennsylvania State University Press, University Park and London.Google Scholar
  28. Nicholson P, Simpson DR, Weston G, Rezanoor HN, Lees AK, Parry DW, Joyce D, 1998. Detection and quantification ofFusarium culmorum andFusarium graminearum in cereals using PCR assays. Physiol Mol Plant Pathol 53: 17–37.CrossRefGoogle Scholar
  29. Nicholson P, Chandler E, Draeger RC, Gosman NE, Simpson DR, Thomsett M, Wilson AH, 2003. Molecular Tools to Study Epidemiology and Toxicology ofFusarium Head Blight of Cereals. Eur J Plant Pathol 109: 691–703.CrossRefGoogle Scholar
  30. Niessen L, Vogel RF, 1998. Group specific PCR-detection of potential trichothecene-producingFusarium species in pure cultures and cereal samples. Syst Appl Microbiol 21: 618–631.PubMedGoogle Scholar
  31. Nirenberg HA, 1981. A simplified method for identifyingFusarium spp. occurring on wheat. Can J Bot 59: 1599–1609.Google Scholar
  32. O ’Donnell K, Kistler HC, Tacke BK, Casper HH, 2000. Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci USA 97: 7905–7910.CrossRefGoogle Scholar
  33. O’Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T, 2004. Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within theFusarium graminearum clade. Fungal Genet Biol 41: 600–623.CrossRefPubMedGoogle Scholar
  34. Parry DW, Jenkinson P, McLeod L, 1995. Fusarium ear blight (scab) in small grain cereals — a review. Plant Pathol 44: 207–238.CrossRefGoogle Scholar
  35. Perkowski J, Kiecana I, Schumacher U, Muller HM, Chełkowski J, Goliński P, 1997. Head infection and accumulation ofFusarium toxins in kernels of 12 barley genotypes inoculated withFusarium graminearum isolates of two chemotypes. Eur J Plant Pathol 103: 85–90.CrossRefGoogle Scholar
  36. Quarta A, Mita G, Haidukowski M, Santino A, Mule G, Visconti A, 2005. Assessment of trichothecene chemotypes of Fusarium culmorum occurring in Europe. Food Additives and Contaminants 22: 309–315.CrossRefPubMedGoogle Scholar
  37. Quarta A, Mita G, Haidukowski M, Logrieco A, Mule G, Visconti A, 2006. Multiplex PCR assay for the identification of nivalenol, 3- and 15-acetyl-deoxynivalenol chemotypes in Fusarium. FEMS Microbiol Lett 259: 7–13.CrossRefPubMedGoogle Scholar
  38. Sali A, Blundell TL, 1993. Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234: 779–815.CrossRefPubMedGoogle Scholar
  39. Schilling AG, Möller EM, Geiger HH, 1996. Polymerase chain reaction-based assays for species-specific detection ofFusarium culmorum, F. graminearum and F.avenaceum. Phytopathology 86: 515–522.CrossRefGoogle Scholar
  40. Snijders CHA, Perkowski J, 1990. Effects of head blight caused byFusarium culmorum on toxin content and weight of wheat kernels. Phytopathology 80: 566–570.CrossRefGoogle Scholar
  41. Tomczak M, Wiśniewska H, Stępień Ł, Kostecki M, Chełkowski J, Goliński P, 2002. Deoxynivalenol, nivalenol and moniliformin occurrence in wheat samples with scab symptoms in Poland (1998–2000). Eur J Plant Pathol 108: 625–630.CrossRefGoogle Scholar
  42. Waalwijk C, Kastelein P, De Vries I, Kerenyi Z, Van Der Lee T, Heselink T, et al. 2003. Major changes inFusarium spp. in wheat in the Netherlands. Eur J Plant Pathol 109: 743–754.CrossRefGoogle Scholar
  43. Waalwijk C, Van der Heide R, de Vries I, van der Lee T, Schoen C, Costrel-de Corainville G, Häuser-Hahn I, Kastelein P, Köhl J, Lonnet P, Demarquet T, Kema GHJ, 2004. Quantitative detection ofFusarium species in wheat using TaqMan. Eur J Plant Pathol 110: 481–494.CrossRefGoogle Scholar
  44. Wakuliński W, Chełkowski J, 1993.Fusarium species causing scab of wheat, rye and triticale in Poland. Hod Rośl Aklim Nasien 37: 137–142.Google Scholar
  45. Ward TJ, Bielawski JP, Kistler HC, Sullivan E, O’Donnell K, 2002. Ancestral polymorphism and adaptive evolution in the trichothecene mycotoxin gene cluster of phytopathogenicFusarium. Proc Natl Acad Sci USA 99: 9278–9283.CrossRefPubMedGoogle Scholar
  46. Xu X-M, Berrie AM, 2005. Epidemiology of mycotoxigenic fungi associated withFusarium ear blight and apple blue mould: A review. Food Additives and Contaminants 22: 290–301.CrossRefPubMedGoogle Scholar
  47. Yoder WT, Christianson LM, 1998. Species-specific primers resolve members ofFusarium sectionFusarium. Taxonomic status of the edible “Quorn” fungus reevaluated. Fungal Genet Biol 23: 68–80.CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2008

Authors and Affiliations

  • Łukasz Stępień
    • 1
    • 2
    Email author
  • Delfina Popiel
    • 1
  • Grzegorz Koczyk
    • 1
  • Jerzy Chełkowski
    • 1
  1. 1.Institute of Plant GeneticsPolish Academy of SciencesPoznańPoland
  2. 2.Department of Molecular Biology, Institute of Plant GeneticsPolish Academy of SciencesPoznańPoland

Personalised recommendations