Advertisement

Journal of Applied Genetics

, Volume 49, Issue 4, pp 383–396 | Cite as

Mystery of DNA repair: the role of the MRN complex and ATM kinase in DNA damage repair

  • Kamila Czornak
  • Sanaullah Chughtai
  • Krystyna H. Chrzanowska
Review Article

Abstract

Genomes are subject to a number of exogenous or endogenous DNA-damaging agents that cause DNA double-strand breaks (DSBs). These critical DNA lesions can result in cell death or a wide variety of genetic alterations, including deletions, translocations, loss of heterozygosity, chromosome loss, or chromosome fusions, which enhance genome instability and can trigger carcinogenesis. The cells have developed an efficient mechanism to cope with DNA damages by evolving the DNA repair machinery. There are 2 major DSB repair mechanisms: nonhomologous end joining (NHEJ) and homologous recombination (HR). One element of the repair machinery is the MRN complex, consisting of MRE11, RAD50 and NBN (previously described as NBS1), which is involved in DNA replication, DNA repair, and signaling to the cell cycle checkpoints. A number of kinases, like ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia and Rad-3-related), and DNA PKcs (DNA protein kinase catalytic subunit), phosphorylate various protein targets in order to repair the damage. If the damage cannot be repaired, they direct the cell to apoptosis. The MRN complex as well as repair kinases are also involved in telomere maintenance and genome stability. The dysfunction of particular elements involved in the repair mechanisms leads to genome instability disorders, like ataxia telangiectasia (A-T), A-T-like disorder (ATLD) and Nijmegen breakage syndrome (NBS). The mutated genes responsible for these disorders code for proteins that play key roles in the process of DNA repair. Here we present a detailed review of current knowledge on the MRN complex, kinases engaged in DNA repair, and genome instability disorders.

Keywords

ATM kinase ATR kinase DNA damage homologous recombination MRN complex nonhomologous end joining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham RT, 2001. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15: 2177–2196.PubMedCrossRefGoogle Scholar
  2. Abraham RT, 2004. PI 3-kinase related kinases: ‘big’ players in stress-induced signaling pathways. DNA Repair (Amst) 3: 883–887.CrossRefGoogle Scholar
  3. Assenmacher N, Hopfner KP, 2004. MRE11/ RAD50/NBS1: complex activities. Chromosoma 113: 157–166.PubMedCrossRefGoogle Scholar
  4. Bakkenist CJ, Kastan MB, 2003. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.PubMedCrossRefGoogle Scholar
  5. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L, et al. 1998. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281: 1674–1677.PubMedCrossRefGoogle Scholar
  6. Bao S, Tibbetts RS, Brumbaugh KM, Fang Y, Richardson DA, Ali A, et al. 2001. ATR/ATM-mediated phosphorylation of human Rad 17 is required for genotoxic stress responses. Nature 411: 969–974.PubMedCrossRefGoogle Scholar
  7. Baskaran R, Wood LD, Whitaker LL, Canman CE, Morgan SE, Xu Y, et al. 1997. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature 387: 516–519.PubMedCrossRefGoogle Scholar
  8. Becker E, Meyer V, Madaoui H, Guerois R, 2006. Detection of a tandem BRCT in Nbs1 and Xrs2 with functional implications in the DNA damage response. Bioinformatics 22: 1289–1292.PubMedCrossRefGoogle Scholar
  9. Bendix-Waltes R, Kalb R, Stumm M, 2005. Rad50 deficiency causes a variant form of Nijmegen breakage syndrome. Eur J Hum Genet 13: 63.Google Scholar
  10. Benson FE, Stasiak A, West SC, 1994. Purification and characterization of the human Rad51 protein, an analogue ofE. coli RecA. Embo J 13: 5764–5771.PubMedGoogle Scholar
  11. Berkovich E, Monnat RJ Jr., Kastan MB, 2007. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9: 683–690.PubMedCrossRefGoogle Scholar
  12. Blasco MA, 2005. Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. Embo J 24: 1095–1103.PubMedCrossRefGoogle Scholar
  13. Bogdanova N, Feshchenko S, Schurmann P, Waltes R, Wieland B, Hillemanns P, et al. 2008. Nijmegen Breakage Syndrome mutations and risk of breast cancer. Int J Cancer 122: 802–806.PubMedCrossRefGoogle Scholar
  14. Boisvert FM, Dery U, Masson JY, Richard S, 2005. Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control. Genes Dev 19: 671–676.PubMedCrossRefGoogle Scholar
  15. Bosotti R, Isacchi A, Sonnhammer EL, 2000. FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 25: 225–227.PubMedCrossRefGoogle Scholar
  16. Buck D, Malivert L, de Chasseval R, Barraud A, Fondaneche MC, Sanal O, et al. 2006. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell 124: 287–299.PubMedCrossRefGoogle Scholar
  17. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ, 2001. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276: 42462–42467.PubMedCrossRefGoogle Scholar
  18. Callen E, Surralles J, 2004. Telomere dysfunction in genome instability syndromes. Mutat Res 567: 85–104.PubMedCrossRefGoogle Scholar
  19. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K, et al. 1998. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281: 1677–1679.PubMedCrossRefGoogle Scholar
  20. Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR 3rd, et al. 1998. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93: 477–486.PubMedCrossRefGoogle Scholar
  21. Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A, et al. 2003. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol 5: 675–679.PubMedCrossRefGoogle Scholar
  22. Chai W, Sfeir AJ, Hoshiyama H, Shay JW, Wright WE, 2006. The involvement of the Mre11/Rad50/Nbs1 complex in the generation of G-overhangs at human telomeres. EMBO Rep 7: 225–230.PubMedCrossRefGoogle Scholar
  23. Chen BP, Uematsu N, Kobayashi J, Lerenthal Y, Krempler A, Yajima H, et al. 2007. Ataxia telangiectasia mutated (ATM) is essential for DNA-PKcs phosphorylations at the Thr-2609 cluster upon DNA double strand break. J Biol Chem 282: 6582–6587.PubMedCrossRefGoogle Scholar
  24. Chen L, Morio T, Minegishi Y, Nakada S, Nagasawa M, Komatsu K, et al. 2005. Ataxiatelangiectasia-mutated dependent phosphorylation of Artemis in response to DNA damage. Cancer Sci 96: 134–141.PubMedCrossRefGoogle Scholar
  25. Chrzanowska KH, Piekutowska-Abramczuk D, Popowska E, Gladkowska-Dura M, Maldyk J, Syczewska M, et al. 2006. Carrier frequency of mutation 657del5 in the NBS1 gene in a population of Polish pediatric patients with sporadic lymphoid malignancies. Int J Cancer 118: 1269–1274.PubMedCrossRefGoogle Scholar
  26. Chrzanowska KH, Janniger CK, 2007. Nijmegen breakage syndrome [Internet]. emedicine [modified 2007 Feb 26; cited 2008 Oct 22]. Available from http://www.emedicine.com/DERM/topic725.htm Chun HH, Gatti RA, 2004. Ataxia-telangiectasia, an evolving phenotype. DNA Repair (Amst) 3: 1187–1196.Google Scholar
  27. Cortez D, Wang Y, Qin J, Elledge SJ, 1999. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286: 1162–1166.PubMedCrossRefGoogle Scholar
  28. Cybulski C, Gorski B, Debniak T, Gliniewicz B, Mierzejewski M, Masojc B, et al. 2004. NBS1 is a prostate cancer susceptibility gene. Cancer Res 64: 1215–1219.PubMedCrossRefGoogle Scholar
  29. D’Amours D, Jackson SP, 2002. The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mol Cell Biol 3: 317–327.PubMedCrossRefGoogle Scholar
  30. de Jager M, Dronkert ML, Modesti M, Beerens CE, Kanaar R, van Gent DC, 2001a. DNA-binding and strand-annealing activities of human Mre11: implications for its roles in DNA double-strand break repair pathways. Nucleic Acids Res 29: 1317–1325.PubMedCrossRefGoogle Scholar
  31. de Jager M, van Noort J, van Gent DC, Dekker C, Kanaar R, Wyman C, 2001b. Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell 8: 1129–1135.PubMedCrossRefGoogle Scholar
  32. Debniak T, Gorski B, Cybulski C, Jakubowska A, Kurzawski G, Lener M, et al. 2003. Germline 657del5 mutation in the NBS 1 gene in patients with malignant melanoma of the skin. Melanoma Res 13: 365–370.PubMedCrossRefGoogle Scholar
  33. Delia D, Piane M, Buscemi G, Savio C, Palmeri S, Lulli P, et al. 2004. MRE11 mutations and impaired ATM-dependent responses in an Italian family with ataxia-telangiectasia-like disorder. Hum Mol Genet 13: 2155–2163.PubMedCrossRefGoogle Scholar
  34. Digweed M, Sperling K, 2004. Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair (Amst) 3: 1207–1217.CrossRefGoogle Scholar
  35. Dolganov GM, Maser RS, Novikov A, Tosto L, Chong S, Bressan DA, Petrini JH, 1996. Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol Cell Biol 16: 4832–4841.PubMedGoogle Scholar
  36. Dong Z, Zhong Q, Chen PL, 1999. The Nijmegen breakage syndrome protein is essential for Mre11 phosphorylation upon DNA damage. J Biol Chem 274: 19513–19516.PubMedCrossRefGoogle Scholar
  37. Dupre A, Boyer-Chatenet L, Gautier J, 2006. Two-step activation of ATM by DNA and the Mre11-Rad50-Nbs1 complex. Nat Struct Mol Biol 13: 451–457.PubMedCrossRefGoogle Scholar
  38. Durocher D, Jackson SP, 2001. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 13: 225–231.PubMedCrossRefGoogle Scholar
  39. Dzikiewicz-Krawczyk A, 2008. The importance of making ends meet: Mutations in genes and altered expression of proteins of the MRN complex and cancer. Mutat Res.Google Scholar
  40. Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S, et al. 1995. The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83: 655–666.PubMedCrossRefGoogle Scholar
  41. Fernet M, Gribaa M, Salih MA, Seidahmed MZ, Hall J, Koenig M, 2005. Identification and functional consequences of a novel MRE11 mutation affecting 10 Saudi Arabian patients with the ataxia telangiectasia-like disorder. Hum Mol Genet 14: 307–318.PubMedCrossRefGoogle Scholar
  42. Gatei M, Young D, Cerosaletti KM, Desai-Mehta A, Spring K, Kozlov S, et al. 2000. ATM-dependent phosphorylation of nibrin in response to radiation exposure. Nat Genet 25: 115–119.PubMedCrossRefGoogle Scholar
  43. Gennery AR, 2006. Primary immunodeficiency syndromes associated with defective DNA double-strand break repair. Br Med Bull 77-78: 71–85.PubMedCrossRefGoogle Scholar
  44. Goldberg M, Stucki M, Falck J, D’Amours D, Rahman D, Pappin D, et al. 2003. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421: 952–956.PubMedCrossRefGoogle Scholar
  45. Gorski B, Cybulski C, Huzarski T, Byrski T, Gronwald J, Jakubowska A, et al. 2005. Breast cancer predisposing alleles in Poland. Breast Cancer Res Treat 92: 19–24.PubMedCrossRefGoogle Scholar
  46. Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM, et al. 1997. The Werner syndrome protein is a DNA helicase. Nat Genet 17: 100–103.PubMedCrossRefGoogle Scholar
  47. Greenberg RA, Sobhian B, Pathania S, Cantor SB, Nakatani Y, Livingston DM, 2006. Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev 20: 34–46.PubMedCrossRefGoogle Scholar
  48. Hebbring SJ, Fredriksson H, White KA, Maier C, Ewing C, McDonnell SK, et al. 2006. Role of the Nijmegen breakage syndrome 1 gene in familial and sporadic prostate cancer. Cancer Epidemiol Biomarkers Prev 15: 935–938.PubMedCrossRefGoogle Scholar
  49. Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA, et al. 2002. The Rad50 zinc-hook is a structure joining Mre1 1 complexes in DNA recombination and repair. Nature 418: 562–566.PubMedCrossRefGoogle Scholar
  50. [INBSSG]. Nijmegen breakage syndrome. Arch Dis Child 82: 400–406.Google Scholar
  51. Jiang X, Sun Y, Chen S, Roy K, Price BD, 2006. The FATC domains of PIKK proteins are functionally equivalent and participate in the Tip60-dependent activation of DNA-PKcs and ATM. J Biol Chem 281: 15741–15746.PubMedCrossRefGoogle Scholar
  52. Kanka C, Brozek I, Skalska B, Siemiatkowska A, Limon J, 2007. Germline NBS1 mutations in families with aggregation of breast and/or ovarian cancer from north-east Poland. Anticancer Res 27: 3015–3018.PubMedGoogle Scholar
  53. Kastan MB, Lim DS, 2000. The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1: 179–186.PubMedCrossRefGoogle Scholar
  54. Khanna KK, Jackson SP, 2001. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27: 247–254.PubMedCrossRefGoogle Scholar
  55. Khanna KK, Keating KE, Kozlov S, Scott S, Gatei M, Hobson K, et al. 1998. ATM associates with and phosphorylates p53: mapping the region of interaction. Nat Genet 20: 398–400.PubMedCrossRefGoogle Scholar
  56. Kim JE, Minter-Dykhouse K, Chen J, 2006. Signaling networks controlled by the MRN complex and MDC1 during early DNA damage responses. Mol Carcinog 45: 403–408.PubMedCrossRefGoogle Scholar
  57. Kim ST, Xu B, Kastan MB, 2002. Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev 16: 560–570.PubMedCrossRefGoogle Scholar
  58. Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB, 2004. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 18: 1423–1438.PubMedCrossRefGoogle Scholar
  59. Kobayashi J, Iwabuchi K, Miyagawa K, Sonoda E, Suzuki K, Takata M, Tauchi H, 2008. Current topics in DNA double-strand break repair. J Radiat Res (Tokyo) 49: 93103.CrossRefGoogle Scholar
  60. Koch CA, Agyei R, Galicia S, Metalnikov P, O’Donnell P, Starostine A, et al. 2004. Xrcc4 physically links DNA end processing by polynucleotide kinase to DNA ligation by DNA ligase IV. Embo J 23: 3874–3885.PubMedCrossRefGoogle Scholar
  61. Kozlov SV, Graham ME, Peng C, Chen P, Robinson PJ, Lavin MF. 2006. Involvement of novel autophosphorylation sites in ATM activation. Embo J 25: 3504–3514.PubMedCrossRefGoogle Scholar
  62. Kruger L, Demuth I, Neitzel H, Varon R, Sperling K, Chrzanowska KH, et al. 2007. Cancer incidence in Nijmegen breakage syndrome is modulated by the amount of a variant NBS protein. Carcinogenesis 28: 107–111.PubMedCrossRefGoogle Scholar
  63. Lavin MF, 2007. ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene 26: 7749–7758.PubMedCrossRefGoogle Scholar
  64. Lee JH, Paull TT, 2004. Direct activation of the ATM protein kinase by the Mre1 1/Rad50/Nbs1 complex. Science 304: 93–96.PubMedCrossRefGoogle Scholar
  65. Li X, Heyer WD, 2008. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18: 99–113.PubMedCrossRefGoogle Scholar
  66. Limbo O, Chahwan C, Yamada Y, de Bruin RA, Wittenberg C, Russell P, 2007. Ctp1 is a cell-cycle-regulated protein that functions with Mre11 complexto control double-strand breakrepair by homologous recombination. Mol Cell 28: 134–146.PubMedCrossRefGoogle Scholar
  67. Luo G, Yao MS, Bender CF, Mills M, Bladl AR, Bradley A, Petrini JH, 1999. Disruption of mRad50 causes embryonic stem cell lethality, abnormal embryonic development, and sensitivity to ionizing radiation. Proc Natl Acad Sci USA 96: 7376–7381.PubMedCrossRefGoogle Scholar
  68. Maloisel L, Fabre F, Gangloff S, 2008. DNA polymerase delta is preferentially recruited during homologous recombination to promote heteroduplex DNA extension. Mol Cell Biol 28: 1373–1382.PubMedCrossRefGoogle Scholar
  69. Mari PO, Florea BI, Persengiev SP, Verkaik NS, Bruggenwirth HT, Modesti M, et al. 2006. Dynamic assembly of end-joining complexes requires interaction between Ku70/80 and XRCC4. Proc Natl Acad Sci USA 103: 18597–18602.PubMedCrossRefGoogle Scholar
  70. Maser RS, Monsen KJ, Nelms BE, Petrini JH, 1997. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol Cell Biol 17: 6087–6096.PubMedGoogle Scholar
  71. Maser RS, Zinkel R, Petrini JH, 2001. An alternative mode of translation permits production of a variant NBS1 protein from the common Nijmegen breakage syndrome allele. Nat Genet 27: 417–421.PubMedCrossRefGoogle Scholar
  72. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, et al. 2007. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316: 1160–1166.PubMedCrossRefGoogle Scholar
  73. Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ, 2000. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 97: 10389–10394.PubMedCrossRefGoogle Scholar
  74. Mazin AV, Alexeev AA, Kowalczykowski S.C., 2003. A novel function of Rad54 protein. Stabilization of the Rad51 nucleoprotein filament. J Biol Chem 278: 14029–14036.PubMedCrossRefGoogle Scholar
  75. Mirzoeva OK, Petrini JH, 2003. DNA replication-dependent nuclear dynamics of the Mre11 complex. Mol Cancer Res 1: 207–218.PubMedGoogle Scholar
  76. Moncalian G, Lengsfeld B, Bhaskara V, Hopfner KP, Karcher A, Alden E, et al. 2004. The rad50 signature motif: essential to ATP binding and biological function. J Mol Biol 335: 937–951.PubMedCrossRefGoogle Scholar
  77. Moreno-Herrero F, de Jager M, Dekker NH, Kanaar R, Wyman C, Dekker C, 2005. Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA. Nature 437: 440–443.PubMedCrossRefGoogle Scholar
  78. Moshous D, Callebaut I, de Chasseval R, Corneo B, Cavazzana-Calvo M, Le Deist F, et al. 2001. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105: 177–186.PubMedCrossRefGoogle Scholar
  79. O’Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela B, et al. 2001. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell 8: 1175–1185.PubMedCrossRefGoogle Scholar
  80. O’Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA, 2003. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 33: 497–501.PubMedCrossRefGoogle Scholar
  81. Opresko PL, von Kobbe C, Laine JP, Harrigan J, Hickson ID, Bohr VA, 2002. Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J Biol Chem 277: 41110–41119.PubMedCrossRefGoogle Scholar
  82. Paull TT, Gellert M, 1999. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev 13: 1276–1288.PubMedCrossRefGoogle Scholar
  83. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM, 2000. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10: 886–895.PubMedCrossRefGoogle Scholar
  84. Resnick IB, Kondratenko I, Pashanov E, Maschan AA, Karachunsky A, Togoev O, et al. 2003. 657del5 mutation in the gene for Nijmegen breakage syndrome (NBS1) in a cohort of Russian children with lymphoid tissue malignancies and controls. Am J Med Genet A 120A: 174–179.PubMedCrossRefGoogle Scholar
  85. Robison JG, Bissler JJ, Dixon K, 2007. Replication protein A is required for etoposide-induced assembly of MRE11/RAD50/NBS1 complex repair foci. Cell Cycle 6: 2408–2416.PubMedCrossRefGoogle Scholar
  86. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM, 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273: 5858–5868.PubMedCrossRefGoogle Scholar
  87. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, et al. 1995. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749–1753.PubMedCrossRefGoogle Scholar
  88. Seemanova E, Jarolim P, Seeman P, Varon R, Digweed M, Swift M, Sperling K, 2007. Cancer risk of heterozygotes with the NBN founder mutation. J Natl Cancer Inst 99: 1875–1880.PubMedCrossRefGoogle Scholar
  89. Shafman T, Khanna KK, Kedar P, Spring K, Kozlov S, Yen T, et al. 1997. Interaction between ATM protein and c-Abl in response to DNA damage. Nature 387: 520–523.PubMedCrossRefGoogle Scholar
  90. Shen Z, Cloud KG, Chen DJ, Park MS, 1996. Specific interactions between the human RAD51 and RAD52 proteins. J Biol Chem 271: 148–152.PubMedCrossRefGoogle Scholar
  91. Shiloh Y, 2003a. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.PubMedCrossRefGoogle Scholar
  92. Shiloh Y, 2003b. ATM: ready, set, go. Cell Cycle 2: 116–117.PubMedGoogle Scholar
  93. Shiloh Y, 2006. The ATM-mediated DNA-damage response: taking shape. Trends Biochem Sci 31: 402–410.PubMedCrossRefGoogle Scholar
  94. Smogorzewska A, de Lange T, 2004. Regulation of telomerase by telomeric proteins. Annu Rev Biochem 73: 177–208.PubMedCrossRefGoogle Scholar
  95. Sokolenko AP, Rozanov ME, Mitiushkina NV, Sherina NY, Iyevleva AG, Chekmariova EV, et al. 2007. Founder mutations in early-onset, familial and bilateral breast cancer patients from Russia. Fam Cancer 6: 281–286.PubMedCrossRefGoogle Scholar
  96. Steffen J, Maneva G, Poplawska L, Varon R, Mioduszewska O, Sperling K, 2006. Increased risk of gastrointestinal lymphoma in carriers of the 657del5 NBS1 gene mutation. Int J Cancer 119: 2970–2973.PubMedCrossRefGoogle Scholar
  97. Steffen J, Varon R, Mosor M, Maneva G, Maurer M, Stumm M, et al. 2004. Increased cancer risk of heterozygotes with NBS1 germline mutations in Poland. Int J Cancer 111: 67–71.PubMedCrossRefGoogle Scholar
  98. Stewart GS, Maser RS, Stankovic T, Bressan DA, Kaplan MI, Jaspers NG, et al. 1999. The DNA double-strand break repair gene hMRE11 is mutated in individuals with an ataxia-telangiectasia-like disorder. Cell 99: 577–587.PubMedCrossRefGoogle Scholar
  99. Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA, 2004. ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64: 2390–2396.PubMedCrossRefGoogle Scholar
  100. Sugiyama T, Zaitseva EM, Kowalczykowski SC, 1997. A single-stranded DNA-binding protein is needed for efficient presynaptic complex formation by theSaccharomyces cerevisiae Rad51 protein. J Biol Chem 272: 7940–7945.PubMedCrossRefGoogle Scholar
  101. Sun Y, Jiang X, Chen S, Fernandes N, Price BD, 2005. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA 102: 13182–13187.PubMedCrossRefGoogle Scholar
  102. Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT, 1986. The incidence and gene frequency of ataxia-telangiectasia in the United States. Am J Hum Genet 39: 573–583.PubMedGoogle Scholar
  103. Taniguchi T, D’Andrea AD, 2006. Molecular pathogenesis of Fanconi anemia: recent progress. Blood 107: 4223–4233.PubMedCrossRefGoogle Scholar
  104. Taniguchi T, Garcia-Higuera I, Xu B, Andreassen PR, Gregory RC, Kim ST, et al. 2002. Convergence of the Fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109: 459–472.PubMedCrossRefGoogle Scholar
  105. Taylor AM, Groom A, Byrd PJ, 2004. Ataxia-telangiectasia-like disorder (ATLD): its clinical presentation and molecular basis. DNA Repair (Amst) 3: 1219–1225.CrossRefGoogle Scholar
  106. Trujillo KM, Sung P, 2001. DNA structure-specific nuclease activities in theSaccharomyces cerevisiae Rad50*Mre11 complex. J Biol Chem 276: 35458–35464.PubMedCrossRefGoogle Scholar
  107. Trujillo KM, Yuan SS, Lee EY, Sung P, 1998. Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J Biol Chem 273: 21447–21450.PubMedCrossRefGoogle Scholar
  108. Uematsu N, Weterings E, Yano K, Morotomi-Yano K, Jakob B, Taucher-Scholz G, et al. 2007. Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks. J Cell Biol 177: 219–229.PubMedCrossRefGoogle Scholar
  109. van den Bosch M, Bree RT, Lowndes NF, 2003. The MRN complex: coordinating and mediating the response to broken chromosomes. EMBO Rep 4: 844–849.PubMedCrossRefGoogle Scholar
  110. van Gent DC, Hoeijmakers JH, Kanaar R, 2001. Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2: 196–206.PubMedCrossRefGoogle Scholar
  111. Varon R, Seemanova E, Chrzanowska K, Hnateyko O, Piekutowska-Abramczuk D, Krajewska- Walasek M, et al. 2000. Clinical ascertainment of Nijmegen breakage syndrome (NBS) and prevalence of the major mutation, 657del5, in three Slav populations. Eur J Hum Genet 8: 900–902.PubMedCrossRefGoogle Scholar
  112. Varon R, Vissinga C, Platzer M, Cerosaletti KM, Chrzanowska KH, Saar K, et al. 1998. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93: 467–476.PubMedCrossRefGoogle Scholar
  113. Verdun RE, Crabbe L, Haggblom C, Karlseder J, 2005. Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell 20: 551–561.PubMedCrossRefGoogle Scholar
  114. Wang H, Guan J, Wang H, Perrault AR, Wang Y, Iliakis G, 2001. Replication protein A2 phosphorylation after DNA damage by the coordinated action of ataxia telangiectasia-mutated and DNA-dependent protein kinase. Cancer Res 61: 8554–8563.PubMedGoogle Scholar
  115. Waterman MJ, Stavridi ES, Waterman JL, Halazonetis TD, 1998. ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet 19: 175–178.PubMedCrossRefGoogle Scholar
  116. Weterings E, Chen DJ, 2008. The endless tale of non-homologous end-joining. Cell Res 18: 114–124.PubMedCrossRefGoogle Scholar
  117. White CI, Haber JE, 1990. Intermediates of recombination during mating type switching inSaccharomyces cerevisiae. Embo J 9: 663–673.PubMedGoogle Scholar
  118. Williams RS, Williams JS, Tainer JA, 2007. Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol 85: 509–520.PubMedCrossRefGoogle Scholar
  119. Woods CG, Bundey SE, Taylor AM, 1990. Unusual features in the inheritance of ataxia telangiectasia. Hum Genet 84: 555–562.PubMedCrossRefGoogle Scholar
  120. Wu Y, Xiao S, Zhu XD, 2007. MRE11-RAD50-NBS1 and ATM function as co-mediators of TRF1 in telomere length control. Nat Struct Mol Biol 14: 832–840.PubMedCrossRefGoogle Scholar
  121. Xiao Y, Weaver DT, 1997. Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res 25: 2985–2991.PubMedCrossRefGoogle Scholar
  122. Xu B, Kim S, Kastan MB, 2001. Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 21: 3445–3450.PubMedCrossRefGoogle Scholar
  123. Yang Q, Zhang R, Horikawa I, Fujita K, Afshar Y, Kokko A, et al. 2007. Functional diversity of human protection of telomeres 1 isoforms in telomere protection and cellular senescence. Cancer Res 67: 11677–11686.PubMedCrossRefGoogle Scholar
  124. Zhang Y, Zhou J, Lim CU, 2006. The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control. Cell Res 16: 45–54.PubMedCrossRefGoogle Scholar
  125. Zhou BB, Elledge SJ, 2000. The DNA damage response: putting checkpoints in perspective. Nature 408: 433–439.PubMedCrossRefGoogle Scholar
  126. Zhu J, Petersen S, Tessarollo L, Nussenzweig A, 2001. Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr Biol 11: 105–109.PubMedCrossRefGoogle Scholar
  127. Zou Y, Liu Y, Wu X, Shell SM, 2006. Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol 208: 267–273.PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2008

Authors and Affiliations

  • Kamila Czornak
    • 1
  • Sanaullah Chughtai
    • 2
  • Krystyna H. Chrzanowska
    • 1
  1. 1.Department of Medical GeneticsThe Children’s Memorial Health InstituteWarszawaPoland
  2. 2.Institute of Human GeneticsCharité-University Medicine BerlinBerlinGermany

Personalised recommendations