Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Bone-marrow-derived stem cells — our key to longevity?

Abstract

Bone marrow (BM) was for many years primarily regarded as the source of hematopoietic stem cells. In this review we discuss current views of the BM stem cell compartment and present data showing that BM contains not only hematopoietic but also heterogeneous non-hematopoietic stem cells. It is likely that similar or overlapping populations of primitive non-hematopoietic stem cells in BM were detected by different investigators using different experimental strategies and hence were assigned different names (e.g., mesenchymal stem cells, multipotent adult progenitor cells, or marrow-isolated adult multilineage inducible cells). However, the search still continues for true pluripotent stem cells in adult BM, which would fulfill the required criteria (e.g. complementation of blastocyst development). Recently our group has identified in BM a population of very small embryonic-like stem cells (VSELs), which express several markers characteristic for pluripotent stem cells and are found during early embryogenesis in the epiblast of the cylinder-stage embryo.

This is a preview of subscription content, log in to check access.

References

  1. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ, 2004. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation 110: 3300–3305

  2. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, et al. 1999. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221–228.

  3. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. 1997. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275: 964–967.

  4. Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, et al. 2004. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10: 64–71.

  5. Boiani M, Schöler HR, 2005. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol 6: 872–884.

  6. Bradley A, Evans M, Kaufman MH, Robertson E, 1984. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309: 255–256.

  7. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A, 1994. Circulating fibrocytes define anew leukocyte subpopulation that mediates tissue repair. Mol Med 1: 71–81.

  8. Bunting KD, Hawley RG, 2003. Integrative molecular and developmental biology of adult stem cells. Biol Cell 95: 563–578.

  9. Buzańska L, Machaj EK, Zabłocka B, Pojda Z, Domańska-Janik K, 2002. Human cord blood-derived cells attain neuronal and glial features in vitro. J Cell Sci 115: 2131–2138.

  10. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM, 2001. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98: 2396–2402.

  11. Castro RF, Jackson KA, Goodell MA, Robertson CS, Liu H, Shine HD, 2002. Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297: 1299.

  12. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. 2004. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10: 858–864.

  13. Corbel SY, Lee A, Yi L, Duenas J, Brazelton TR, Blau HM, et al. 2003. Contribution of hematopoietic stem cells to skeletal muscle. Nat Med 9: 1528–1532.

  14. Corti S, Locatelli F, Donadoni C, Strazzer S, Salani S, Del Bo R, et al. 2002a. Neuroectodermal and microglial differentiation of bone marrow cells in the mouse spinal cord and sensory ganglia. J Neurosci Res 70: 721–733.

  15. Corti S, Strazzer S, Del Bo R, Salani S, Bossolasco P, Fortunato F, et al. 2002b. A subpopulation of murine bone marrow cells fully differentiates along the myogenic pathway and participates in muscle repair in the mdx dystrophic mouse. Exp Cell Res 277: 74–85.

  16. Crane IJ, Wallace CA, McKillop-Smith S, Forrester JV, 2000. CXCR4 receptor expression on human retinal pigment epithelial cells from the blood-retina barrier leads to chemokine secretion and migration in response to stromal cell-derived factor 1 alpha. J Immunol 165: 4372–4378.

  17. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC, 2004. Marrow-isolated adult multilineage inducible (MIAMI) cells, aunique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci 117: 2971–2981.

  18. De Felici M, McLaren A, 1983. In vitro culture of mouse primordial germ cells. Exp Cell Res 144: 417–427.

  19. Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdorf D, Badel K, et al. 2004. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma. J Clin Oncol 22: 1095–1102.

  20. Devine SM, Hoffman R, 2000. Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr Opin Hematol 7: 358–363.

  21. Dexter TM, Spooncer E, 1987. Growth and differentiation in the hemopoietic system. Annu Rev Cell Biol 3.

  22. Di Campli C, Piscaglia AC, Pierelli L, Rutella S, Bonanno G, Alison MR, et al. 2004. A human umbilical cord stem cell rescue therapy in a murine model of toxic liver injury. Dig Liver Dis 36: 603–613.

  23. Dome B, Timar J, Dobos J, Meszaros L, Raso E, Paku S, et al. 2006. Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 66: 7341–7347.

  24. Donovan PJ, 1994. Growth factor regulation of mouse primordial germ cell development. Curr Top Dev Biol 29.

  25. Donovan PJ, 1998. The germ cell — the mother of all stem cells. Int J Dev Biol 42: 1043–1050.

  26. Eghbali-Fatourechi GZ, Lamsam J, Fraser D, Nagel D, Riggs BL, Khosla S, 2005. Circulating osteoblastlineage cells in humans. N Engl J Med 352: 1959–1966.

  27. Evans MJ, Kaufman MH, 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154–156.

  28. Gomperts BN, Belperio JA, Rao PN, Randell SH, Fishbein MC, Burdick MD, et al. 2006. Circulating progenitor epithelial cells traffic via CXCR4/CXCL12 in response to airway injury. J Immunol 176: 1916–1927.

  29. Hasegawa T, Kosaki A, Shimizu K, Matsubara H, Mori Y, Masaki H, et al. 2006. Amelioration of diabetic peripheral neuropathy by implantation of hematopoietic mononuclear cells in streptozotocininduced diabetic rats. Exp Neurol 199: 274–280.

  30. Hashimoto N, Jin H, Liu T, Chensue SW, Phan SH, 2004. Bone marrow-derived progenitor cells in pulmonary fibrosis. J Clin Invest 113: 243–252.

  31. Hatch HM, Zheng D, Jorgensen ML, Petersen BE, 2002. SDF-1 alpha/CXCR4: a mechanism for hepatic oval cell activation and bone marrow stem cell recruitment to the injured liver of rats. Cloning Stem Cells 4: 339–351.

  32. Hess D, Li L, Martin M, Sakano S, Hill D, Strutt B, et al. 2003. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat Biotechnol 21: 763–770.

  33. Hess DC, Abe T, Hill WD, Studdard AM, Carothers J, Masuya M, et al. 2004. Hematopoietic origin of microglial and perivascular cells in brain. Exp Neurol 186: 134–144.

  34. Hill WD, Hess DC, Martin-Studdard A, Carothers JJ, Zheng J, Hale D, et al. 2004. SDF-1 (CXCL 12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol 63: 84–96.

  35. Hitchon C, Wong K, Ma G, Reed J, Lyttle D, El-Gabalawy H, 2002. Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum 46: 2587–2597.

  36. Hochedlinger K, Jaenisch R, 2003. Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. N Engl J Med 349: 275–286.

  37. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et al. 2005. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7: 393–395.

  38. Houchen CW, George RJ, Sturmoski MA, Cohn SM, 1999. FGF-2 enhances intestinal stem cell survival and its expression is induced after radiation injury. Am J Physiol 276: G249–258.

  39. Houghton J, Stoicov C, Nomura S, Rogers AB, Carlson J, Li H, et al. 2004. Gastric cancer originating from bone marrow-derived cells. Science 306.

  40. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, et al. 2001. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107: 1395–1402.

  41. Ji JF, He BP, Dheen ST and Tay SS, 2004. Expression of chemokine receptors CXCR4, CCR2, CCR5 and CX3CR1 in neural progenitor cells isolated from the subventricular zone of the adult rat brain. Neurosci Lett 355: 236–240.

  42. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, et al. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41–49.

  43. Jin DK, Shido K, Kopp HG, Petit I, Shmelkov SV, Young LM, et al. 2006. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 2006 May; 12(5): 12: 557–567.

  44. Johnson J, Bagley J, Skaznik-Wikiel M, Lee HJ, Adams GB, Niikura Y, et al. 2005. Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell 122: 303–315.

  45. Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG, 2003. Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112: 42–49.

  46. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, et al. 2001. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103: 634–637.

  47. Kollet O, Shivtiel S, Chen YQ, Suriawinata J, Thung SN, Dabeva MD, et al. 2003. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest 112: 160–169.

  48. Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M, Majka M, et al. 2004. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res 95: 1191–1199.

  49. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiuk M, Moldenhawer S, Zuba-Surma E, et al. 2007. Morphological and molecular characterization of novel population of CXCR4(+) SSEA-4(+) Oct-4(+) very small embryonic-like cells purified from human cord blood — preliminary report. Leukemia 21: 297–303.

  50. Kucia M, Ratajczak J, Ratajczak MZ, 2005a. Are bone marrow stem cells plastic or heterogeneous — that is the question. Exp Hematol 33: 613–623.

  51. Kucia M, Ratajczak J, Ratajczak MZ, 2005b. Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biol Cell 97: 133–146.

  52. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J, et al. 2006a. A population of very small embryonic-like (VSEL) CXCR4(+) SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 20: 857–869.

  53. Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ, 2005c. Bone marrow as a home of heterogeneous populations of nonhematopoietic stem cells. Leukemia 19: 1118–1127.

  54. Kucia M, Wojakowski W, Reca R, Machalinski B, Gozdzik J, Majka M, et al. 2006b. The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an SDF-1-, HGF-, and LIF-dependent manner. Arch Immunol Ther Exp (Warsz) 54: 121–135.

  55. Kucia M, Zhang YP, Reca R et al. 2006c. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 20: 18–28.

  56. Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, Majka M, et al. 2006d. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 20: 18–28.

  57. Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG, 2001. Circulating skeletal stem cells. J Cell Biol 153: 1133–1140.

  58. LaBarge MA, Blau HM, 2002. Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111: 589–601.

  59. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, et al. 2000. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6: 1229–1234.

  60. Lazarini F, Tham TN, Casanova P, Arenzana-Seisdedos F, Dubois-Dalcq M, 2003. Role of the al-pha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system. Glia 42: 139–148.

  61. Lemoli RM, Catani L, Talarico S, Loggi E, Gramenzi A, Baccarani U, et al. 2006. Mobilization of bone marrow-derived hematopoietic and endothelial stem cells after orthotopic liver transplantation and liver resection. Stem Cells 24: 2817–2825.

  62. Li HC, Stoicov C, Rogers AB, Houghton J, 2006. Stem cells and cancer: evidence for bone marrow stem cells in epithelial cancers. World J Gastroenterol 12: 363–371.

  63. Liu C, Chen Z, Chen Z, Zhang T, Lu Y, 2006. Multiple tumor types may originate from bone marrow-derived cells. Neoplasia 8: 716–724.

  64. Long MA, Corbel SY, Rossi FM, 2005. Circulating myogenic progenitors and muscle repair. Semin Cell Dev Biol 16: 632–640.

  65. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, et al. 1999. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103: 697–705.

  66. Martin GR, 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78: 7634–7638.

  67. Matsui Y, Zsebo K, Hogan BL, 1992. Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70: 841–847.

  68. McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA, 2002. Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci USA 99: 1341–1346.

  69. McLaren A, 1992. Development of primordial germ cells in the mouse. Andrologia 24: 243–247.

  70. McLaren A, 2003. Primordial germ cells in the mouse. Dev Biol 262: 1–15.

  71. McLaren A, Lawson KA, 2005. How is the mouse germ-cell lineage established? Differentiation 73: 435–437.

  72. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR, 2000. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290: 1779–1782.

  73. Mieno S, Ramlawi B, Boodhwani M, Clements RT, Minamimura K, Maki T, et al. 2006. Role of stromal-derived factor-1 alpha in the induction of circulating CD34+CXCR4+ progenitor cells after cardiac surgery. Circulation 114: I186–192.

  74. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, et al. 2004. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428: 664–668.

  75. Nayernia K, Lee JH, Drusenheimer N, Nolte J, Wulf G, Dressel R, et al. 2006. Derivation of male germ cells from bone marrow stem cells. Lab Invest 86: 654–663.

  76. O’Farrell PH, Stumpff J, Su TT, 2004. Embryonic cleavage cycles: how is a mouse like a fly? Curr Biol 14: R35–45.

  77. Orkin SH, Zon LI, 2002. Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol 3: 323–328.

  78. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, et al. 2001. Bone marrow cells regenerate infarcted myocardium. Nature 410: 701–705.

  79. Palermo AT, Labarge MA, Doyonnas R, Pomerantz J, Blau HM, 2005. Bone marrow contribution to skeletal muscle: a physiological response to stress. Dev Biol 279: 336–344.

  80. Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ, 2004. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 103: 1662–1668.

  81. Pesce M, Orlandi A, Iachininoto MG, Straino S, Torella AR, Rizzuti V, et al. 2003. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res 93: e51–62.

  82. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, et al. 1999. Bone marrow as a potential source of hepatic oval cells. Science 284: 1168–1170.

  83. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, et al. 2002. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3: 687–694.

  84. Phillips RJ, Burdick MD, Hong K, Lutz MA, Murray LA, Xue YY, et al. 2004. Circulating fibrocytes traffic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 114: 438–446.

  85. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147.

  86. Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J, et al. 2000. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 106: 1331–1339.

  87. Prockop DJ, 1997. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276: 71–74.

  88. Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J, 2004. Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. Leukemia 18: 29–40.

  89. Ratajczak MZ, Majka M, Kucia M, Drukala J, Pietrzkowski Z, Peiper S, et al. 2003. Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells 21: 363–371.

  90. Resnick JL, Bixler LS, Cheng L, Donovan PJ, 1992. Long-term proliferation of mouse primordial germ cells in culture. Nature 359: 550–551.

  91. Resnick JL, Ortiz M, Keller JR, Donovan PJ, 1998. Role of fibroblast growth factors and their receptors in mouse primordial germ cell growth. Biol Reprod 59: 1224–1229.

  92. Reya T, Morrison SJ, Clarke MF, Weissman IL, 2001. Stem cells, cancer, and cancer stem cells. Nature 414: 105–111.

  93. Rideout WMr, Eggan K, Jaenisch R, 2001. Nuclear cloning and epigenetic reprogramming of the genome. Science 293: 1093–1098.

  94. Schioppa T, Uranchimeg B, Saccani A, Biswas SK, Doni A, Rapisarda A, et al. 2003. Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198: 1391–1402.

  95. Sell S, 2004. Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51: 1–28.

  96. Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, et al. 1998. Derivation of pluripotent stem cells from cultured human primordial germ cells. Proc Natl Acad Sci USA 95: 13726–13731.

  97. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, et al. 1998. Evidence for circulating bone marrow-derived endothelial cells. Blood 92: 362–367.

  98. Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, et al. 2001. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation 103: 2776–2779.

  99. Shyu WC, Lin SZ, Yang HI, Tzeng YS, Pang CY, Yen PS, et al. 2004. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation 110: 1847–1854.

  100. Song YS, Ryu YH, Choi SR, Kim JC, 2005. The involvement of adult stem cells originated from bone marrow in the pathogenesis of pterygia. Yonsei Med J 46: 687–692.

  101. Tacchini L, Matteucci E, De Ponti C, Desiderio MA, 2003. Hepatocyte growth factor signaling regulates transactivation of genes belonging to the plasminogen activation system via hypoxia inducible factor-1. Exp Cell Res 290: 391–401.

  102. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y, et al. 1998. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393: 591–594.

  103. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al. 1999. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5: 434–438.

  104. Tarkowski AK, 1959. Experiments on the development of isolated blastomeres of mouse eggs. Nature 184: 1286–1287.

  105. Tögel F, Isaac J, Hu Z, Weiss K, Westenfelder C, 2005. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int 67: 1772–1784.

  106. Tolar J, Nauta AJ, Osborn MJ, Panoskaltsis Mortari A, McElmurry RT, Bell S, et al. 2007. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells 25: 371–379.

  107. Turnpenny L, Brickwood S, Spalluto CM, Piper K, Cameron IT, Wilson DI, et al. 2003. Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells. Stem Cells 21: 598–609.

  108. Urbich C, Dimmeler S, 2004. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95: 343–353.

  109. Vasyutina E, Stebler J, Brand-Saberi B, Schulz S, Raz E, Birchmeier C, 2005. CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. Genes Dev 19: 2187–2198.

  110. Virchow R, 1855. Editorial Archive fuer pathologische Anatomie und Physiologie fuer klinische Medizin. 8: 23–54.

  111. Wagers A J, Sherwood RI, Christensen JL, Weissman IL, 2002. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297: 2256–2259.

  112. Wojakowski W, Tendera M, Michalowska A, Majka M, Kucia M, Maslankiewicz K, et al. 2004. Mobilization of CD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 110: 3213–3220.

  113. Wu G, Mannam AP, Wu J, Kirbis S, Shie JL, Chen C, et al. 2003. Hypoxia induces myocyte-dependent COX-2 regulation in endothelial cells: role of VEGF. Am J Physiol Heart Circ Physiol 285: H2420–2429.

  114. Wylie C, 1999. Germ cells. Cell 96: 165–174

  115. Zhang H, Vutskits L, Pepper MS, Kiss JZ, 2003. VEGF is a chemoattractant for FGF-2-stimulated neural progenitors. J Cell Biol 163: 1375–1384.

  116. Zwaka TP, Thomson JA, 2005. A germ cell origin of embryonic stem cells? Development 132: 227–233

Download references

Author information

Correspondence to Mariusz Z. Ratajczak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ratajczak, M.Z., Zuba-Surma, E.K., Machalinski, B. et al. Bone-marrow-derived stem cells — our key to longevity?. J Appl Genet 48, 307–319 (2007). https://doi.org/10.1007/BF03195227

Download citation

Keywords

  • CXCR4
  • embryonic stem cells
  • Nanog
  • Oct-4
  • SSEA
  • very small embryonic-like stem cells