Journal of Applied Genetics

, Volume 48, Issue 3, pp 219–231

Development of genetic maps of the citrus varieties ‘Murcott’ tangor and ‘Pêra’ sweet orange by using fluorescent AFLP markers

  • Antonio Carlos de Oliveira
  • Marinês Bastianel
  • Mariângela Cristofani-Yaly
  • Alexandre Morais do Amaral
  • Marcos Antonio Machado
Original Article

Abstract

The progeny of 87 BC1 hybrids of ‘Murcott’ tangor and ‘Pêra’ sweet orange, genotyped with fluorescent amplified fragment length polymorphism (fAFLP) markers, was used for the construction of genetic maps for both citrus varieties. Mapping strategies, considering the progeny as a result of backcrossing and cross-pollination, were exploited in Mapmaker 2.0 (LOD score ≥ 3.0 and 9 ≤ 0.40) and JoinMap 3.0 software (LOD score ≥ 3.0 and 9 ≤ 0.25), respectively. Genetic map distances (in cM) between the linked fAFLPs were estimated, in both packages, by the Kosambi’s function. Maps of both parents were constructed in Mapmaker with 121 of the 202 fAFLP markers showing 1:1 Mendelian segregation rates (’Murcott’ map: 65 fAFLPs, average distance between them 29.5 cM, divided into 9 linkage groups (LGs), total size 1651.47 cM; ’Pêra’ map: 55 fAFLPs, average distance between them 31.9 cM, divided into 5 LGs, total size 1596.2 cM). The second ’Murcott’ map, constructed through linkage analysis of 347 fAFLP markers with 3:1 or 1:1 segregation rates by using JoinMap, resulted in the linkage of 227 markers with an average distance of 4.25 cM among them, divided into 9 LGs of 845 cM. fAFLP loci showing distorted segregation and/or clustered were observed in different LGs of the maps generated by all the software. The use of the ’Murcott’ tangor and ’Pêra’ sweet orange genetic maps in research on identification of citrus QRLs (quantitative resistance loci) toXylella fastidiosa and QTLs (quantitative trait loci) related to the productivity and quality of the juice, respectively, is discussed.

Keywords

Citrus reticulata Citrus sinensis hybrids mapping Mapmaker JoinMap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaro AA, Maia ML, Gonzalez MA, 1997. Efeitos econômicos decorrentes da clorose variegada dos citros. In: Donadio LC, Moreira CS, eds. Clorose Variegada dos Citros, Bebedouro: 162.Google Scholar
  2. Araújo EF, Queiroz LP, Machado MA, 2003. What isCitrus? Taxonomic implications from a study of cp-DNA evolution in the tribe Citreae (Rutaceae, subfamily Aurantioideae). Organisms Diversity Evolution 3: 55–62.CrossRefGoogle Scholar
  3. Ayres M, Ayres Júnior M, Ayres DL, Santos AS, 2000. BioEstat: aplicaçöes estatísticas nas áreas das ciências biológicas e médicas. Publicaçőes Avulsas Mamirauá. Belém/PA: Sociedade Civil Mamirauá: 272.Google Scholar
  4. Baccarcia G, Albertini E, Tavoletti S, Falcinelli M, Veronesi F, 1999. AFLP fingerprinting inMedicago spp.: its development and application in linkage mapping. Plant Breeding 118: 335–340.CrossRefGoogle Scholar
  5. Bert PF, Charmet G, Sourdille P, Hayward MD, Balfourier F, 1999. A high-density molecular map for ryegrass (Loliumperenne) using AFLP markers. Theor Appl Genet 99: 445–452.CrossRefGoogle Scholar
  6. Buetow KH, 1991. Influence of aberrant observations on high-resolution linkage analysis outcomes. Am J Hum Genet 49: 985–994.PubMedGoogle Scholar
  7. Cai Q, Guy CL, Moore GA, 1994. Extension of the linkage map inCitrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation-responsive loci. Theor Appl Genet 89: 606–614.CrossRefGoogle Scholar
  8. Castiglioni P, Ajmone-Marsan P, Van Wijk R Motto M, 1998. AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theor Appl Genet 99: 425–431.CrossRefGoogle Scholar
  9. Chang CJ, Garnier M, Zreik L, Rossetti V, Bové JM, 1993. Culture and serological detection of the xylem-limited bacterium causing citrus variegated chlorosis and its identification as a strain ofXylella fastidiosa. Curr Microbiol 27: 137–142.CrossRefGoogle Scholar
  10. Cristofani M, Machado MA, Grattapaglia D, 1999. Genetic linkage maps ofCitrus sunki Hort. ex. Tan.and Poncirus trifoliata (L.) Raf. and mapping of citrus tristeza virus resistance gene. Euphytica 109: 25–32.CrossRefGoogle Scholar
  11. De Simone M, Russo MP, Puleo G, Marsan PA, Lorenzoni C, Marocco A, Recupero GR, 1998. Construction of genetic maps forCitrus aurantium andC. latipes based on AFLP, RAPD and RFLP markers. Fruits 53: 383–390.Google Scholar
  12. Deng RE, Huang SY, Xiao S, Gmitter CM, 1997. Development and characterization of SCAR markers linked to the citrus tristeza virus resistance gene fromPoncirus trifoliata. Genome 40: 697–704.CrossRefPubMedGoogle Scholar
  13. Dettori MT, Quarta R, Verde I, 2001. A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markers. Genome 44: 783–790.CrossRefPubMedGoogle Scholar
  14. Durham RE, Liou PC, Gmitter FG, Moore GA, 1992. Linkage of restriction fragment length polymorphisms and isozymes inCitrus. Theor Appl Genet 84: 39–48.CrossRefGoogle Scholar
  15. Fang DQ, Federici CT, Roose ML, 1997. Development of molecular markers linked to a gene controlling fruit acidity in citrus. Genome 40: 841–849.CrossRefPubMedGoogle Scholar
  16. Flament MH, Kebe I, Clément D, Pieretti I, Risterucci AM, ŃGoran JAK, Cilas C, 2001. Genetic mapping of resistance factors toPhytophthora palmivora in cocoa. Genome 44: 79–85.CrossRefPubMedGoogle Scholar
  17. Gadish I, Zamir D, 1986. Differential zygotic abortion in an interspecificLycopersicon cross. Genome 29: 156–159.Google Scholar
  18. García R, Asíns MJ, Forner J, Carbonell EA, 1999. Genetic analysis of apomixis inCitrus and Poncirus by molecular markers. Theor Appl Genet 99: 511–518.CrossRefGoogle Scholar
  19. Garcia MR, Asns MJ, Carbonell EA, 2000. QTL analysis of yield and seed number inCitrus. Theor Appl Genet 101: 487–493.CrossRefGoogle Scholar
  20. Giovannoni JJ, Wing RA, Ganal MW, Tanksley SD, 1991. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucl Acids Res 19: 6553–6558.CrossRefPubMedGoogle Scholar
  21. Gmitter Jr FG, Xiao SY, Huang S, Hu X.L, Garnsey SM, Deng Z, 1996. A localized linkage map of the citrus virus resistance gene region. Theor Appl Genet 92: 688–695.CrossRefGoogle Scholar
  22. Guerra M, 1993. Cytogenetics of Rutaceae. V. High chromosomal variability inCitrus species revealed by CMA/DAPI staining. Heredity 71: 234–241.CrossRefGoogle Scholar
  23. Heun M, Kennedy E, Anderson JA, Lapitan NLV, Sorrells ME, 1991. Construction of arestriction fragmentlength polymorphismmap for barley (Hordeum vulgare). Genome 34: 437–447.Google Scholar
  24. Jarrell DC, Roose ML, Traugh SN, Kupper RS, 1992. A genetic maps ofCitrus based on the segregation of isozymes and RFLPs in an intergeneric cross. Theor Appl Genet 84: 49–56.CrossRefGoogle Scholar
  25. Kijas JMH, Thomas MR, Fowler JCS, Roose ML, 1997. Integration of trinucleotide microsatellites into a linkage map ofCitrus. Theor Appl Genet 94: 701–706.CrossRefGoogle Scholar
  26. Kosambi DD, 1944. The estimation of map distance from recombination values. Ann Eugen 12: 172–175.Google Scholar
  27. Krutovskii KV, Vollmer SS, Soresen FC, Adams WT, Knapp SJ, Strauss SH, 1998. RAPD genome maps of Douglas-fir. JHered 3: 197–205.Google Scholar
  28. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L, 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174–181.CrossRefPubMedGoogle Scholar
  29. Laranjeira FF, Pompeu Jr J, Harakava R, Figueiredo JO, Carvalho AS, Coletta Filho HD, 1998. Cultivares e espécies cítricas hospedeiras deXylella fastidiosa em condiçôes de campo. Fitopatologia bras 23: 147–154.Google Scholar
  30. Lespinasse D, Rodier-Goud M, Grivet L, Leconte A, Legnate H, Seguin MA, 2000. Saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite, and isozyme markers. Theor Appl Genet 100: 127–138.CrossRefGoogle Scholar
  31. Ling P, Duncam LW, Deng Z, Dunn Z, Hu X, Huang S, Gmitter FG, 2000. Inheritance of citrus nematode resistance and its linkage with molecular markers. Theor Appl Genet 100: 1010–1017.CrossRefGoogle Scholar
  32. Liou PC, 1990. A molecular study of the citrus genome through restriction fragment length polymorphism and isozyme mapping. PhD thesis. University of Florida, Gainesville, FL: 143.Google Scholar
  33. Lu ZX, Sosinski GL, Reighard WV, Baird WV, Abott AG, 1998. Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41: 199–207.CrossRefGoogle Scholar
  34. Luro F, Lorieux M, Laigret F, Bové JM, Ollitraut P, 1994. Genetic mapping of an intergeneric citrus hybrid using molecular markers. Fruits 49: 404–408.Google Scholar
  35. Machado MA, Coletta Filho HD, Targon MLNP, Pompeu Juniror J, 1996. Genetic relationship of Mediterranean mandarins (Citrus deliciosa Tenore) using RAPD markers. Euphytica 92: 321–332.CrossRefGoogle Scholar
  36. Maliepaard C, Jansen J, van Ooijen JW, 1997. Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications. Genet Res Camb 70: 236–250.Google Scholar
  37. Nandi S, Subudhi PK, Senadhira D, Manigbas NL, Sen-Mandi S, Huang N, 1997. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet 255: 1–8.CrossRefPubMedGoogle Scholar
  38. Nienhuis J, Helentjaris T, Slocum M, Ruggero B, Schaefer A, 1987. Restriction fragment length polymorphism analysis of loci associated with insect resistance in tomato. Crop Sci 27: 797–803.CrossRefGoogle Scholar
  39. Nikaido A, Yoshimaru H, Tsumura Y, Suyama Y, Murai M, Nagasaka K, 1999. Segregation distortion for AFLP markers inCryptomeria japonica. Genes Genet Systems 74: 55–59.CrossRefGoogle Scholar
  40. Oliveira AC, Garcia AN, Cristofani M, Machado MA, 2002. Identification of citrus hybrids through the combinationof leaf apex morphology and SS Rmarkers. Euphytica 128: 397–403.CrossRefGoogle Scholar
  41. Oliveira AC, 2003. Clorose variegada dos citros: quantificação molecular do agente causal, avaliação de trocas gasosas de plantas infectadas e mapeamento de lócus de resistçncia quantitativa de citros àXylellafastidiosa Wells (1987) com fAFLPs. PhD thesis. Universidade Estadual de Campinas, Campinas, SP: 287.Google Scholar
  42. Roose ML, Schwarzacher T, Heslop-Harrison J, 1998. The chromosomes ofCitrus andPoncirus species and hybrids: identification of characteristic chromosomes and physical mapping of rDNA loci using in situ hybridization and fluorochrome banding. J Hered 89: 83–86.CrossRefPubMedGoogle Scholar
  43. Roose ML, Jarrel DC, Kupper RS, 1992. Genetic mapping inCitrus Poncirus F2 population. Proc.Int.Soc. Citriculture 1: 210–213.Google Scholar
  44. Ruiz C, Asins MJ, 2003. Comparison betweenPoncirus andCitrus genetic linkage maps. Theor Appl Genet 106: 826–836.PubMedGoogle Scholar
  45. Sankar AA and Moore GA, 2001. Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of the linkage map. Theor Appl Gene 102: 206–214.CrossRefGoogle Scholar
  46. Shields DC, Collins A, Buetow KH, Morton NE, 1991. Error filtration, interference, and the human linkage map. Proc Natl Acad Sci USA 88: 6501–6505.CrossRefPubMedGoogle Scholar
  47. Soltis DE, Soltis PS, Doyle JJ, 1998. Molecular systematics of plants. II. DNA sequencing. Kluwer Academic Publishers. Norwell, Miss: 265–296.Google Scholar
  48. Tozlu I, Guy CL, Moore GA, 1999a. QTL analysis of Na+ and Cl accumulation-related traits in an intergeneric BC1 progeny ofCitrus andPoncirus under saline and nonsaline environments. Genome 42: 692–705.CrossRefGoogle Scholar
  49. Tozlu I, Guy CL, Moore GA, 1999b. QTL analysis of morphological traits in an intergeneric BC1 progeny ofCitrus andPoncirus under saline and nonsaline environments. Genome 42: 1020–1029.CrossRefGoogle Scholar
  50. Van Ooijen JW, Voorrips RE, 2001. Join MapTM version 3.0; software for the calculation of genetic linkage maps. Wageningen: Plant Res Internat 2001: 51.Google Scholar
  51. Wells JM, Raju BC, Hung H, Weisburg WG, Mandelco-Paul L, Brenner DJ, 1987.Xylella fastidiosa gen. nov., sp. nov: gram-negative, xylem-limited, fastidious plant bacteria related toXanthomonas spp. Int J Syst Bacteriol 37: 136–143.CrossRefGoogle Scholar
  52. Zabeau M, 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application N 0534858 A1.Google Scholar
  53. Zamir D, Tadmor Y, 1986. Unequal segregation of nuclear genes in plants. Bot Gaz 147: 355–358.CrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2007

Authors and Affiliations

  • Antonio Carlos de Oliveira
    • 1
  • Marinês Bastianel
    • 2
  • Mariângela Cristofani-Yaly
    • 2
  • Alexandre Morais do Amaral
    • 2
    • 3
  • Marcos Antonio Machado
    • 2
  1. 1.Department of Natural SciencesSouthwest State University of BahiaBahiaBrazil
  2. 2.Centro APTA Citros ’Sylvio Moreira’/IACCordeirópolisBrazil
  3. 3.Embrapa Genetic Resources and BiotechnologyBrazil

Personalised recommendations