Advertisement

Journal of Applied Genetics

, Volume 48, Issue 1, pp 47–61 | Cite as

Animal transgenesis: state of the art and applications

  • Eduardo O. Melo
  • Aurea M. O. Canavessi
  • Mauricio M. Franco
  • Rodolfo Rumpf
Review Article

Abstract

There is a constant expectation for fast improvement of livestock production and human health care products. The advent of DNA recombinant technology and the possibility of gene transfer between organisms of distinct species, or even distinct phylogenic kingdoms, has opened a wide range of possibilities. Nowadays we can produce human insulin in bacteria or human coagulation factors in cattle milk. The recent advances in gene transfer, animal cloning, and assisted reproductive techniques have partly fulfilled the expectation in the field of livestock transgenesis. This paper reviews the recent advances and applications of transgenesis in livestock and their derivative products. At first, the state of art and the techniques that enhance the efficiency of livestock transgenesis are presented. The consequent reduction in the cost and time necessary to reach a final product has enabled the multiplication of transgenic prototypes around the world. We also analyze here some emerging applications of livestock transgenesis in the field of pharmacology, meat and dairy industry, xenotransplantation, and human disease modeling. Finally, some bioethical and commercial concerns raised by the transgenesis applications are discussed.

Keywords

cloning GMO livestock transgenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auchincloss H, Jr., Sachs DH, 1998. Xenogeneic transplantation. Annu Rev Immunol 16: 433–470.PubMedCrossRefGoogle Scholar
  2. Barthel R, Feng J, Piedrahita JA, McMurray DN, Templeton JW, Adams LG, 2001. Stable transfection of the bovine NRAMP1 gene into murine RAW264.7 cells: effect onBrucella abortus survival. Infect Immun 69: 3110–3119.PubMedCrossRefGoogle Scholar
  3. Betts D, Bordignon V, Hill J, Winger Q, Westhusin M, Smith L, King W, 2001. Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc Natl Acad Sci USA 98: 1077–1082.PubMedCrossRefGoogle Scholar
  4. Bleck GT, White BR, Miller DJ, Wheeler MB, 1998. Production of bovine alpha-lactalbumin in the milk of transgenic pigs. J Anim Sci 76: 3072–3078.PubMedGoogle Scholar
  5. Brackett BG, Baranska W, Sawicki W, Koprowski H, 1971. Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization. Proc Natl Acad Sci USA 68: 353–357.PubMedCrossRefGoogle Scholar
  6. Brophy B, Smolenski G, Wheeler T, Wells D, L’Huillier P, Laible G, 2003. Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat Biotechnol 21: 157–162.PubMedCrossRefGoogle Scholar
  7. Bueler H, Aguzzi A, Sailer A, Greiner RA, Autenried P, Aguet M, Weissmann C, 1993. Mice devoid of PrP are resistant to scrapie. Cell 73: 1339–1347.PubMedCrossRefGoogle Scholar
  8. Bueler H, Fischer M, Lang Y, Bluethmann H, Lipp HP, DeArmond SJ, et al. 1992. Normal development and behaviour of mice lacking the neuronal cell-surface PrP protein. Nature 356: 577–582.PubMedCrossRefGoogle Scholar
  9. Campbell KH, Mc Whir J, Ritchie WA, Wilmut I, 1996. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380: 64–66.PubMedCrossRefGoogle Scholar
  10. Capecchi MR, 1989. Altering the genome by homologous recombination. Science 244: 1288–1292.PubMedCrossRefGoogle Scholar
  11. Caplen NJ, Kinrade E, Sorgi F, Gao X, Gruenert D, Geddes D, et al. 1995. In vitro liposome-mediated DNA transfection of epithelial cell lines using the cationic liposome DC-Chol/DOPE. Gene Ther 2: 603–613.PubMedGoogle Scholar
  12. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA, 2003. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361: 393–395.PubMedCrossRefGoogle Scholar
  13. Celebi C, Guillaudeux T, Auvray P, Vallet-Erdtmann V, Jegou B, 2003. The Making of “Transgenic Spermatozoa”. Biol Reprod 68: 1477–1483.PubMedCrossRefGoogle Scholar
  14. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, et al. 1998. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280: 1256–1258.PubMedCrossRefGoogle Scholar
  15. Chan AW, Homan EJ, Ballou LU, Burns JC, Bremel RD, 1998. Transgenic cattle produced by reverse-transcribed gene transfer in oocytes. Proc Natl Acad Sci USA 95: 14028–14033.PubMedCrossRefGoogle Scholar
  16. Chen CA, Okayama H, 1988. Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques 6: 632–638.PubMedGoogle Scholar
  17. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, et al. 1998. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280: 1256–1258.PubMedCrossRefGoogle Scholar
  18. Clark AJ, Bissinger P, Bullock DW, Damak S, Wallace R, Whitelaw CB, Yull F, 1994. Chromosomal position effects and the modulation of transgene expression. Reprod Fertil Dev 6: 589–598.PubMedCrossRefGoogle Scholar
  19. Clark J, Whitelaw B, 2003. A future fortransgenic livestock. Nat Rev Genet 4: 825–833.PubMedCrossRefGoogle Scholar
  20. Cohen SN, Chang AC, Boyer HW, Helling RB, 1973. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci USA 70: 3240–3244.PubMedCrossRefGoogle Scholar
  21. Denman J, Hayes M, O’Day C, Edmunds T, Bartlett C, Hirani S, et al. 1991. Transgenic expression of a variant of human tissue-type plasminogen activator in goat milk: purification and characterization of the recombinant enzyme. Biotechnology (NY) 9: 839–843.CrossRefGoogle Scholar
  22. Denning C, Burl S, Ainslie A, Bracken J, Dinnyes A, Fletcher J, et al. 2001. Deletion of the alpha (1, 3) galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat Biotechnol 19: 559–562.PubMedCrossRefGoogle Scholar
  23. Detwiler LA, Rubenstein R, 2000. Bovine spongiform encephalopathy: an overview. Asaio J 46: S73–79.PubMedCrossRefGoogle Scholar
  24. Diamond LE, Quinn CM, Martin MJ, Lawson J, Platt JL, Logan JS, 2001. A human CD46 transgenic pig model system for the study of discordant xenotransplantation. Transplantation 71: 132–142.PubMedCrossRefGoogle Scholar
  25. Djojosubroto MW, Choi YS, Lee HW, Rudolph KL, 2003. Telomeres and telomerase in aging, regeneration and cancer. Mol Cells 15: 164–175.PubMedGoogle Scholar
  26. Draghia-Akli R, Fiorotto ML, Hill LA, Malone PB, Deaver DR, Schwartz RJ, 1999. Myogenic expression of an injectable protease-resistant growth hormone-releasing hormone augments long-term growth in pigs. Nat Biotechnol 17: 1179–1183.PubMedCrossRefGoogle Scholar
  27. Dyck MK, Lacroix D, Pothier F, Sirard MA, 2003. Making recombinant proteins in animals — different systems, different applications. Trends Biotechnol 21: 394–399.PubMedCrossRefGoogle Scholar
  28. Ebert KM, Selgrath JP, DiTullio P, Denman J, Smith TE, Memon MA, et al. 1991. Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: generation of transgenic goats and analysis of expression. Biotechnology (NY) 9: 835–838.CrossRefGoogle Scholar
  29. Ebert KM, DiTullio P, Barry CA, Schindler JE, Ayres SL, Smith TE, et al. 1994. Induction of human tissue plasminogen activator in the mammary gland of transgenic goats. Biotechnology (NY) 12: 699–702.CrossRefGoogle Scholar
  30. Evans MJ, Kaufman MH, 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature 292: 154–156.PubMedCrossRefGoogle Scholar
  31. Fodor WL, Williams BL, Matis LA, Madri JA, Rollins SA, Knight JW, et al. 1994. Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proc Natl Acad Sci USA 91: 11153–11157.PubMedCrossRefGoogle Scholar
  32. Gibbons J, Arat S, Rzucidlo J, Miyoshi K, Waltenburg R, Respess D, et al. 2002. Enhanced survivability of cloned calves derived from roscovitine-treated adult somatic cells. Biol Reprod 66: 895–900.PubMedCrossRefGoogle Scholar
  33. Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ, et al. 2001. Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19: 741–745.PubMedCrossRefGoogle Scholar
  34. Gordon JW, Ruddle FH, 1981. Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214: 1244–1246.PubMedCrossRefGoogle Scholar
  35. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, et al. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17: 71–74.PubMedCrossRefGoogle Scholar
  36. Hammer RE, Pursel VG, Rexroad CE, Jr., Wall RJ, Bolt DJ, Ebert KM, et al. 1985. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315: 680–683.PubMedCrossRefGoogle Scholar
  37. Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, Galloway SM, 2004. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheeo (Ovis aries). Biol Reprod 70: 900–909.PubMedCrossRefGoogle Scholar
  38. Hasegawa K, Motsuchi W, Tanaka S, Dosako S, 1994. Inhibition with lactoferrin of in nitro infection with human herpes virus. Jpn J Med Sci Biol 47: 73–85.PubMedGoogle Scholar
  39. Honaramooz A, Behboodi E, Blash S, Megee SO, Dobrinski I, 2003. Germ cell transplantation in goats. Mol Reprod Dev 64: 422–428.PubMedCrossRefGoogle Scholar
  40. Honaramooz A, Megee SO, Dobrinski I, 2002. Germ cell transplantation in pigs. Biol Reprod 66: 21–28.PubMedCrossRefGoogle Scholar
  41. Human Genome Sequencing C, 2004. Finishing the euchromatic sequence of the human genome. Nature 431: 931–945.CrossRefGoogle Scholar
  42. Iguma LT, Lisauskas SF, Melo EO, Franco MM, Pivato I, Vianna GR, et al. 2005. Development of bovine embryos reconstructed by nuclear transfer of transfected and non-transfected adult fibroblast cells. Genet Mol Res 4: 55–66.PubMedGoogle Scholar
  43. Imaizumi T, Lankford KL, Burton WV, Fodor WL, Kocsis JD, 2000. Xenotransplantation of transgenic pig olfactory ensheathing cells promotes axonal regeneration in rat spinal cord. Nat Biotechnol 18: 949–953.PubMedCrossRefGoogle Scholar
  44. Jackson DA, Symons RH, Berg P, 1972. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci USA 69: 2904–2909.PubMedCrossRefGoogle Scholar
  45. Jaenisch R, Fan H, Croker B, 1975. Infection of preimplantation mouse embryos and of newborn mice with leukemia virus: tissue distribution of viral DNA and RNA and leukemogenesis in the adult animal. Proc Natl Acad Sci USA 72: 4008–4012.PubMedCrossRefGoogle Scholar
  46. Jost B, Vilotte JL, Duluc I, Rodeau JL, Freund JN, 1999. Production of low-lactose milk by ectopic expression of intestinal lactase in the mouse mammary gland. Nat Biotechnol 17: 160–164.PubMedCrossRefGoogle Scholar
  47. Juengel JL, Hudson NL, Heath DA, Smith P, Reader KL, Lawrence SB, et al. 2002. Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol Reprod 67: 1777–1789.PubMedCrossRefGoogle Scholar
  48. Kang Y, Jimenez-Flores R, Richardson T, 1986. Casein genes and genetic engineering of the caseins. Basic Life Sci 37: 95–111.PubMedGoogle Scholar
  49. Karatzas CN, 2003. Designer milk from transgenic clones. Nat Biotechnol 21: 138–139.PubMedCrossRefGoogle Scholar
  50. Karatzas CN, Turner JD, 1997. Toward altering milk composition by genetic manipulation: current status and challenges. J Dairy Sci 80: 2225–2232.PubMedCrossRefGoogle Scholar
  51. Kasinathan P, Knott JG, Moreira PN, Burnside AS, Jerry DJ, Robl JM, 2001a. Effect of fibroblast donor cell age and cell cycle on development of bovine nuclear transfer embryos in vitro. Biol Reprod 64: 1487–1493.PubMedCrossRefGoogle Scholar
  52. Kasinathan P, Knott JG, Wang Z, Jerry DJ, Robl JM, 2001b. Production of calves from G1 fibroblasts. Nat Biotechnol 19: 1176–1178.PubMedCrossRefGoogle Scholar
  53. Keefer CL, 2004. Production of bioproducts through the use of transgenic animal models. Anim Reprod Sci 82-83: 5–12.PubMedCrossRefGoogle Scholar
  54. Kerr DE, Plaut K, Branley AJ, Williamson CM, Lax AJ, Moore K, et al. 2001. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice. Nat Biotechnol 19: 66–70.PubMedCrossRefGoogle Scholar
  55. Kerr DE, Wellnitz O, 2003. Mammary expression of new genes to combat mastitis. J Anim Sci 81: 38–47.PubMedGoogle Scholar
  56. Kovesdi I, Brough DE, Bruder JT, Wickham TJ, 1997. Adenoviral vectors for gene transfer. Curr Opin Biotechnol 8: 583–589.PubMedCrossRefGoogle Scholar
  57. Krimpenfort P, Rademakers A, Eyestone W, van der Schans A, van den Broek S, Kooiman P, et al. 1991. Generation of transgenic dairy cattle using ‘in vitro’ embryo production. Biotechnology (NY) 9: 844–847.CrossRefGoogle Scholar
  58. Kues WA, Niemann H, 2004. The contribution of farm animals to human health. Trends Biotechnol 22: 286–294.PubMedCrossRefGoogle Scholar
  59. Kuroiwa Y, Kasinathan P, Choi YJ, Naeem R, Tomizuka K, Sullivan EJ, et al. 2002. Cloned transchromosomic calves producing human immunoglobulin. Nat Biotechnol 20: 889–894.PubMedCrossRefGoogle Scholar
  60. Kuroiwa Y, Kasinathan P, Matsushita H, Sathiyaselan J, Sullivan EJ, Kakitani M, et al. 2004. Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle. Nat Genet 36: 775–780.PubMedCrossRefGoogle Scholar
  61. Lanza RP, Cibelli JB, Blackwell C, Cristofalo VJ, Francis MK, Baerlocher GM, et al. 2000. Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science 288: 665–669.PubMedCrossRefGoogle Scholar
  62. Lazaris A, Arcidiacono S, Huang Y, Zhou JF, Duguay F, Chretien N, et al. 2002. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295: 472–476.PubMedCrossRefGoogle Scholar
  63. Li L, Shen W, Min L, Dong H, Sun Y, Pan Q, 2006. Human lactoferrin transgenic rabbits produced efficiently using dimethylsulfoxide-sperm-mediated gene transfer. Reprod Fertil Dev 18: 689–695.PubMedCrossRefGoogle Scholar
  64. Lipinski D, Jura J, Kalak R, Plawski A, Kala M, Szalata M, et al. 2003. Transgenic rabbit producing human growth hormone in milk. J Appl Genet 44: 165–174.PubMedGoogle Scholar
  65. Maione B, Lavitrano M, Spadafora C, Kiessling AA, 1998. Sperm-mediated gene transfer in mice. Mol Reprod Dev 50: 406–409.PubMedCrossRefGoogle Scholar
  66. Martin GR, 1981. Isolation of a pluripotent cell line from early mouse embryos cultured in medium condiyioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78: 7634–7638.PubMedCrossRefGoogle Scholar
  67. Marx J, 2003. Medicine. Building better mouse models for studying cancer. Science 299: 1972–1975.PubMedCrossRefGoogle Scholar
  68. Massoud M, Attal J, Thepot D, Pointu H, Stinnakre MG, Theron MC, et al. 1996. The deleterious effects of human erythropoietin gene driven by the rabbit whey acidic protein gene promoter in transgenic rabbits. Reprod Nutr Dev 36: 555–563.PubMedCrossRefGoogle Scholar
  69. McCreath KJ, Howcroft J, Campbell KH, Colman A, Schnieke AE, Kind AJ, 2000. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405: 1066–1069.PubMedCrossRefGoogle Scholar
  70. McKee C, Gibson A, Dalrymple M, Emslie L, Garner I, Cottingham I, 1998. Production of biologically active salmon calcitonin in the milk of transgenic rabbits. Nat Biotechnol 16: 647–651.PubMedCrossRefGoogle Scholar
  71. McPherron AC, Lawler AM, Lee SJ, 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83–90.PubMedCrossRefGoogle Scholar
  72. McPherron AC, Lee SJ, 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94: 12457–12461.PubMedCrossRefGoogle Scholar
  73. Melo EO, Sousa RV, Iguma LT, Franco MM, Rech EL, Rumpf R, 2005. Isolation of transfected fibroblast clones for use in nuclear transfer and transgene detection in cattle embryos. Genet Mol Res 4: 812–821.PubMedGoogle Scholar
  74. Michalak E, Lipinski D, Slomski R, 2006. Loop formation by the transgene WAP: 6 × HishGH in transgenic rabbit fibroblast, revealed by fluorescence in situ hybridization to nuclear halos. J Appl Genet 47: 247–249.PubMedCrossRefGoogle Scholar
  75. Miller HI, 2002. As biotech turns 20. Nat Rev Drug Discov 1: 1007–1008.PubMedCrossRefGoogle Scholar
  76. Mogford JE, Liu WR, Reid R, Chiu CP, Said H, Chen SJ, et al. 2006. Adenoviral human telomerase reverse transcriptase dramatically improves ischemic wound healing without detrimental immune response in an aged rabit model. Hum Gene Ther 17: 651–660.PubMedCrossRefGoogle Scholar
  77. Muller M, Brenig B, Winnacker EL, Brem G, 1992. Transgenic pigs carrying cDNA copies encoding the murine Mx1 protein which confers resistance to influenza virus infection. Gene 121: 263–270.PubMedCrossRefGoogle Scholar
  78. Nagano M, Brinster CJ, Orwig KE, Ryu BY, Avarbock MR, Brinster RL, 2001. Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA 98: 13090–13095.PubMedCrossRefGoogle Scholar
  79. Nibbering PH, Ravensbergen E, Welling MM, van Berkel LA, van Berkel PH, Pauwels EK, Nuijens JH, 2001. Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect Immun 69: 1469–1476.PubMedCrossRefGoogle Scholar
  80. Niemann H, Halter R, Carnwath JW, Herrmann D, Lemme E, Paul D, 1999. Expression of human blood clotting factor VIII in the mammary gland of transgenic sheep. Transgenic Res 8: 237–247.PubMedCrossRefGoogle Scholar
  81. Noble MS, Rodriguez-Zas S, Cook JB, Bleck GT, Hurley WL, Wheeler MB, 2002. Lactational performance of first-parity transgenic gilts expressing bovine alpha-lactalbumin in their milk. J Anim Sci 80; 1090–1096.PubMedGoogle Scholar
  82. Nottle MB, Haskard KA, Verma PJ, Du ZT, Grupen CG, McIlfatrick SM, et al. 2001. Effect of DNA concentration on transgenesis rates in mice and pigs. Transgenic Res 10: 523–531.PubMedCrossRefGoogle Scholar
  83. Nuijens JH, van Berkel PH, Geerts ME, Hartevelt PP, de Boer HA, van Veen HA, Pieper FR, 1997. Characterization of recombinant human lactoferrin secreted in milk of transgenic mice. J Biol Chem 272: 8802–8807.PubMedCrossRefGoogle Scholar
  84. Oliveira RR, Carvalho DM, Lisauskas S, Mello E, Vianna GR, Dode MA, et al. 2005. Effectiveness of liposomes to transfect livestock fibroblasts. Genet Mol Res 4: 185–196.PubMedGoogle Scholar
  85. Paleyanda RK, Velander WH, Lee TK, Scandella DH, Gwazdauskas FC, Knight JW, 1997. Transgenic pigs produce functional human factor VIII in milk. Nat Biotechnol 15: 971–975.PubMedCrossRefGoogle Scholar
  86. Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM, 1982. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300: 611–615.PubMedCrossRefGoogle Scholar
  87. Paradis K, Langford G, Long Z, Heneine W, Sandstrom P, Switzer WM, et al. 1999. Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. The XEN 111 Study Group. Science 285: 1236–1241.PubMedCrossRefGoogle Scholar
  88. Patience C, Patton GS, Takeuchi Y, Weiss RA, McClure MO, Rydberg L, Breimer ME, 1998. No evidence of pig DNA or retroviral infection in patients with short-term extracorporeal connection to pig kidneys. Lancet 352: 699–701.PubMedCrossRefGoogle Scholar
  89. Patience C, Takeuchi Y, Weiss RA, 1997. Infection of human cells by an endogenous retrovirus of pigs. Nat Med 3: 282–286.PubMedCrossRefGoogle Scholar
  90. Petters RM, Alexander CA, Wells KD, Collins EB, Sommer JR, Blanton MR, et al. 1997. Genetically engineered large animal model for studying cone photoreceptor survival and degeneration in retinitis pigmentosa. Nat Biotechnol 15: 965–970.PubMedCrossRefGoogle Scholar
  91. Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, et al. 2003. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 299: 411–414.PubMedCrossRefGoogle Scholar
  92. Polejaeva IA, Campbell KH, 2000. New advances in somatic cell nuclear transfer: application in transgenesis. Theriogenology 53: 117–126.PubMedCrossRefGoogle Scholar
  93. Powell BC, Walker SK, Bawden CS, Sivaprasad AV, Rogers GE, 1994. Transgenic sheep and wool growth: possibilities and current status. Reprod Fertil Dev 6: 615–623.PubMedCrossRefGoogle Scholar
  94. Pursel VG, Pinkert CA, Miller KF, Bolt DJ, Campbell RG, Palmiter RD, 1989. Genetic engineering of livestock. Science 244: 1281–1288.PubMedCrossRefGoogle Scholar
  95. Rieth A, Pothier F, Sirard MA, 2000. Electroporation of bovine spermatozoa to carry DNA containing highly repetitive sequences into oocytes and detection of homologous recombination events. Molecular Reproduction and Development 57: 338–345.PubMedCrossRefGoogle Scholar
  96. Robertson E, Bradley A, Kuehn M, Evans M, 1986. Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323: 445–448.PubMedCrossRefGoogle Scholar
  97. Rudolph KL, Millard M, Bosenberg MW, DePinho RA, 2001. Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 28: 155–159.PubMedCrossRefGoogle Scholar
  98. Rudolph NS, 1999. Biopharmaceutical production in transgenic livestock. Trends Biotechnol 17: 367–374.PubMedCrossRefGoogle Scholar
  99. Saito S, Sawai K, Ugai H, Moriyasu S, Minamihashi A, Yamamoto Y, et al. 2003. Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochem Biophys Res Commun 309: 104–113.PubMedCrossRefGoogle Scholar
  100. Schnieke AE, Kind AJ, Ritchie WA, Mycock K, Scott AR, Ritchie M, Wilmut I, et al. 1997. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278: 2130–2133.PubMedCrossRefGoogle Scholar
  101. Seidel GE, Jr., 1993. Resource requirements for transgenic livestock research. J Anim Sci 71: 26–33.PubMedGoogle Scholar
  102. Shiels PG, Kind AJ, Campbell KH, Waddington D, Wilmut I, Colman A, Schnieke AE, 1999. Analysis of telomere lengths in cloned sheep. Nature 399: 316–317.PubMedCrossRefGoogle Scholar
  103. Shim H, Gutierrez-Adan A, Chen LR, BonDurant RH, Behboodi E, Anderson GB, 1997. Isolation of pluripotent stem cells from cultured porcine primordial germ cells. Biol Reprod 57: 1089–1095.PubMedCrossRefGoogle Scholar
  104. Sikes ML, O’Malley BW, Jr., Finegold MJ, Ledley FD, 1994. In vivo gene transfer into rabbit thyroid follicular cells by direct DNA injection. Hum Gene Ther 5: 837–844.PubMedCrossRefGoogle Scholar
  105. Soukka T, Tenovuo J, Lenander-Lumikari M, 1992. Fungicidal effect of human lactoferrin against Candida albicans. FEMS Microbiol Lett 69: 223–228.PubMedCrossRefGoogle Scholar
  106. Souza T, MacDougall C, Campbell BK, McNeilly AS, Baird DT, 2001. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. J Endocrinol 169: R1–6.PubMedCrossRefGoogle Scholar
  107. Stacey A, Schnieke A, Kerr M, Scott A, McKee C, Cottingham I, et al. 1995. Lactation is disrupted by alpha-lactalbumin deficiency and can be restored by human alpha-lactalbumin gene replacement in mice. Proc Natl Acad Sci USA 92: 2835–2839.PubMedCrossRefGoogle Scholar
  108. Stinnakre MG, Vilotte JL, Soulier S, Mercier JC, 1994. Creation and phenotypic analysis of alpha-lactalbumin-deficient mice. Proc Natl Acad USA 91: 6544–6548.CrossRefGoogle Scholar
  109. Suda O, Smith LA, d’Uscio LV, Peterson TE, Katusic ZS, 2005. In vivo expression of recombinant vascular endothelial growth factor in rabbit carotid artery increases production of superoxide anion. Arterioscler Thromb Vasc Biol 25: 506–511.PubMedCrossRefGoogle Scholar
  110. Sullivan EJ, Kasinathan S, Kasinathan P, Robl JM, Collas P, 2004. Cloned calves from chromatin remodeled in vitro. Biol Reprod 70: 146–153.PubMedCrossRefGoogle Scholar
  111. Thomas KR, Capecchi MR, 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51: 503–512.PubMedCrossRefGoogle Scholar
  112. Van Berkel PH, Welling MM, Geerts M, van Veen HA, Ravensbergen B, Salaheddine M, et al. 2002. Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol 20: 484–487.PubMedCrossRefGoogle Scholar
  113. Van Doorn MB, Burggraaf J, van Dam T, Eerenberg A, Levi M, Hack CE, et al. 2005. A phase I study of recombinant human C1 inhibitor in asymptomatic patients with hereditary angioedema. J Allergy Clin Immunol 116: 876–883.PubMedCrossRefGoogle Scholar
  114. Velander WH, Johnson JL, Page RL, Russell CG, Subramanian A, Wilkins TD, et al. 1992. High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C. Proc Natl Acad Sci USA 89: 12003–12007.PubMedCrossRefGoogle Scholar
  115. Wakayama T, Shinkai Y, Tamashiro KL, Niida H, Blanchard DC, Blanchard RJ, et al. 2000. Cloning of mice to six generations. Nature 407: 318–319.PubMedCrossRefGoogle Scholar
  116. Wall RJ, Kerr DE, Bondioli KR, 1997. Transgenic dairy cattle: genetic engineering on a large scale. J Dairy Sci 80: 2213–2224.PubMedCrossRefGoogle Scholar
  117. Wall RJ, Powell AM, Paape MJ, Kerr DE, Bannerman DD, Pursel VG, 2005. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23: 445–451.PubMedCrossRefGoogle Scholar
  118. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420: 520–562.PubMedCrossRefGoogle Scholar
  119. Weissmann C, Enari M, Klohn PC, Rossi D, Flechsing E, 2002. Transmission of prions. Proc Natl Acad Sci USA 99: 16378–16383.PubMedCrossRefGoogle Scholar
  120. Wheeler MB, 2003. Production of transgenic livestock: promise fulfilled. J Anim Sci 81: 32–37.PubMedGoogle Scholar
  121. Willadsen SM, 1986. Nuclear transplantation in sheep embryos. Nature 320: 63–65.PubMedCrossRefGoogle Scholar
  122. Williams RS, Johnston SA, Riedy M, DeVit MJ, McElligott SG, Sanford JC, 1991. Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc Natl Acad Sci USA 88: 2726–2730.PubMedCrossRefGoogle Scholar
  123. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH, 1997. Viable offspring derived from fetal and adult mammalian cells. Nature 385: 810–813.PubMedCrossRefGoogle Scholar
  124. Wobus AM, Boheler KR, 2005. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85: 635–678.PubMedCrossRefGoogle Scholar
  125. Wright G, Carver A, Cottom D, Reeves D, Scot A, Simons P, et al. 1991. High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep. Biotechnology (NY) 9: 830–834.CrossRefGoogle Scholar
  126. Zaidi A, Schmoeckel M, Bhatti F, Waterworth P, Tolan M, Cozzi E, et al. 1998. Life-supporting pig-to-primate renal xenotransplantation using genetically modified donors. Transplantation 65: 1584–1590.PubMedCrossRefGoogle Scholar
  127. Zawada WM, Cibelli JB, Choi PK, Clarkson ED, Golueke PJ, Witta SE, et al. 1998. Somatic cell cloned transgenic bovine neurons for transplantation in parkinsonian rats. Nat Med 4: 569–574.PubMedCrossRefGoogle Scholar
  128. Zbikowska HM, Soukhareva N, Behnam R, Chang R, Drews R, Lubon H, et al. 2002a. The use of the uromodulin promoter to target production of recombinant proteins into urine of transgenic animals. Transgenic Res 11: 425–435.PubMedCrossRefGoogle Scholar
  129. Zbikowska HM, Soukhareva N, Behnam R, Lubon H, Hammond D, Soukharev S, 2002b. Uromodulin promoter directs high-level expression of biologically active human alpha1-antitrypsin into mouse urine. Biochem J 365: 7–11.PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Plant Genetics, Polish Academy of Sciences, Poznan 2007

Authors and Affiliations

  • Eduardo O. Melo
    • 1
  • Aurea M. O. Canavessi
    • 1
  • Mauricio M. Franco
    • 1
  • Rodolfo Rumpf
    • 1
  1. 1.EMBRAPA Genetic Resources and BiotechnologyBrasilia, DFBrazil

Personalised recommendations