Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Importance of sustained high glucose condition in the development of diabetic osteopenia: Possible involvement of the polyol pathway

  • 50 Accesses

  • 17 Citations

This is a preview of subscription content, log in to check access.


  1. 1.

    Schneider LE, Schedl HP. Diabetes and intestinal calcium absorption in the rat. Am J Physiol 1972;223:1319–23.

  2. 2.

    Rumenapf G, Issa S, Schwille PO. The influence of progressive hyperinsulinemia of duodenal calcium absorption in the rat. Metabolism 1987;36:60–5.

  3. 3.

    Lemann J Jr, Lennon EJ, Piering WR, Prien EL Jr, Ricinati ES. Evidence that glucose ingestion inhibits net renal tubular reabsorption of calcium and magnesium in man. J Lab Clin Med 1970;75:578–85.

  4. 4.

    Albright F, Reifenstein EC. Parathyroid glands and metabolic bone disease: selected studies. Baltimore: Williams and Wilkins, 1948:150–60.

  5. 5.

    Levin ME, Boisseau VC, Avioli LV. Effect of diabetes mellitus on bone mass in juvenile and adult onset diabetes. N Engl J Med 1976;294:241–4.

  6. 6.

    Wu K, Schubeck KE, Frost HM. Haversian bone formation rates determined by a new method in human diabetes and osteoporosis. Calcif Tissue Res 1970;6:204–19.

  7. 7.

    Hough S, Avioli LV, Bergfeld MA, Fallon MD, Slatopolsky E, Teitelbaum SL. Correction of abnormal bone and mineral metabolism in chronic streptozotocin-induced diabetes mellitus in the rat by insulin therapy. Endocrinology 1981;108:2228–34.

  8. 8.

    Okuno Y, Nishizawa Y, Sekiya K, Hagiwara S, Miki T, Morii H. Total and regional bone mineral content in patients with non-insulin dependent diabetes mellitus. J Nutr Sci Vitaminol (Suppl) 1991;37:S43–9.

  9. 9.

    Imura H, Seino Y, Nakagawa S, Goto Y, Kosaka K, Sakamoto N, et al. Diabetic osteopenia in Japanese: a geographic study. J Jpn Diabetes Soc 1987;30:9924–9.

  10. 10.

    McNair P, Madsbad S, Christiansen C, Christiansen MS, Faber OK, Binder C, Transbol I. Bone loss in diabetes: effects of metabolic state. Diabetologia 1979;17:283–6.

  11. 11.

    McNair P, Madsbad S, Christiansen C. Bone mineral loss in insulin treated diabetes mellitus: studies on pathogenesis. Acta Endocrinol 1979;90:463–72.

  12. 12.

    Gallagher JC, Melton LJ, Riggs BL. Examination of prevalence rates of possible risk factors in a population with a fracture of the proximal femur. Clin Orthop 1980;153:158–65.

  13. 13.

    Raskin P, Stevenson MR, Barilla DE, Pak CY. The hypercalciuria of diabetes mellitus: its amelioration with insulin. Clin Endocrinol 1978;9:329–35.

  14. 14.

    Silberberg R. The skeleton in diabetes mellitus: a review of the literature. Diabetes Res 1986;3:329–38.

  15. 15.

    Klein M, Frost HM. The numbers of bone resoprtion and formation in rib. Henry Ford Hos Med Bull 1964;12:527–36.

  16. 16.

    Rico H, Hernandez ER, Cabranes JA, Gomez-Castresana F. Suggestion of a deficient osteoblastic function in diabetes mellitus: the possible cause of osteopenia in diabetics. Calcif Tissue Int 1989;45:71–3.

  17. 17.

    Palmeri E, Pedrazzoni M, Malaquinoo AM, Carapezzi C, Carbognani A, Maroni L. Osteocalcin levels in diabetes mellitus. In: Christiansen C, Arnaud CD, Parfitt AM, Peck WA, Riggs L, editors. Osteoporosis. Denmark: Aalborg Stiftsbogtrykkeri, 1984: 809–10.

  18. 18.

    Ishida H, Seino Y, Taminato T, Usami M, Takeshita N, Seino Y, et al. Circulating levels and bone contents of bone ψ-carboxyglutamic acid-containing protein are decreased in streptozotocin-induced diabetes: possible marker of diabetic osteopenia. Diabetes 1988;37:702–6.

  19. 19.

    Brown JP, Delmas PD, Malaval L, Edouard C, Chapuy MC, Meunier PJ. Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet 1984;I:1091–3.

  20. 20.

    Wettenhall REH, Schwarz PL, Bornstein J. Actions of insulin and growth hormone on collagen and chrondroitin sulfate synthesis in bone organ cultures. Diabetes 1969;18:280–4.

  21. 21.

    Terada M, Inaba M, Yano Y, Hasuma T, Nishizawa Y, Shuzo S. Growth inhibitory effect of high glucose concentrations on osteoblast-like MG-63 cells. Bone, in press.

  22. 22.

    Yoshida O, Inaba M, Terada M, Shioi A, Nishizawa Y, Otani S, Morii H. Impaired response of human osteosarcoma (MG-63) cells to human parathyroid hormone induced by sustained exposure to high glucose. Miner Electrolyte Metab 1995; 21:201–5.

  23. 23.

    Inaba M, Terada M, Koyama H, Yoshida O, Ishimura E, Kawagishi T, et al. Influence of high glucose on 1,25-dihydroxyvitamin D3-induced effect on human osteoblast-like MG-63 cells. J Bone Miner Res 1995;10:1050–6.

  24. 24.

    Shioi A, Teitelbaum SL, Ross FP, Welgus HG, Suzuki H, Ohara J, Lacey DL. Interleukin 4 inhibits murine osteoclast formation in vitro. J Cell Biochem 1991;47:272–7.

  25. 25.

    Berry GT. The role of polyols in the pathophysiology of hypergalactosemia. Eur J Pediatr 1995;154(Suppl 2):S53–64.

  26. 26.

    Robinson WG Jr, Nagata M, Laver N, Hohman TC, Kinoshita JH. Diabetic-like retinopathy in rats prevented with an aldose reductase inhibitor. Exp Eye Res 1990;50:355–66.

  27. 27.

    Kern TS, Engerman RL. Galactose-induced retinal microangiopathy in rats. Invest Ophthalmol Vis Sci 1995;36:490–6.

  28. 28.

    Cameron NE, Cotter MA, Rebertson S, Cox D. Muscle and nerve dysfunction in rats with experimental galactosemia. J Exp Physiol 1992;77:89–108.

  29. 29.

    Mizisin AP, Powell HC, Schwann cell injury is attenuated by aldose reductase inhibition in galactose intoxication. J Neuropathol Exp Neurol 1993;52:78–86.

  30. 30.

    Han Z-H, Palnitkar S, Sudhaker Rao D, Nelson D, Parfitt AM. Effects of ethnicity and age or menopause on the remodeling and turnover of iliac bone: implications for mechanisms of bone loss. J Bone Miner Res 1997;12:498–508.

  31. 31.

    Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM. Bone loss and bone turnover in diabetes. Diabetes 1995;44:775–82.

  32. 32.

    Frost HM. Some ABCs of skeletal pathophysiology. 5. Microdamage physiology. Calcif Tissue Int 1991;49:229–31.

  33. 33.

    McKenna MJ, Kleerekoper M, Ellis BI, Rao DS, Parfitt AM, Frame B. Atypical insufficiency fractures confused with loser zones of osteomalacia. Bone 1987;8:71–8.

  34. 34.

    Verhaeghe J, Suiker AMH, Einhorn TA, Geusens P, Visser WJ, Herck EV, et al. Brittle bones in spontaneously diabetic female rats cannot be predicted by bone mineral measurements: studies in diabetic and ovariectomized rats. J Bone Miner Res 1994;9:1657–67.

Download references

Author information

Correspondence to M. Inaba MD.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Inaba, M., Nishizawa, Y., Shioi, A. et al. Importance of sustained high glucose condition in the development of diabetic osteopenia: Possible involvement of the polyol pathway. Osteoporos Int 7, 209–212 (1997).

Download citation


  • High Glucose
  • NIDDM Patient
  • Epalrestat
  • Murine Bone Marrow Cell
  • High Mannitol