Advertisement

Acta Theriologica

, Volume 53, Issue 1, pp 39–46 | Cite as

Effects of latitude and allopatry on body size variation in European water shrews

  • Boris Kryštufek
  • Aila Quadracci
Article

Abstract

We studied the intra- and interspecific size variability of 271 water shrewsNeomys fodiens (Pennant, 1771) andN. anomalus Cabrera, 1907 from seven sample sites along a latitudinal transect from Bosnia and Herzegovina to Poland.Neomys anomalus was the only water shrew in three Dinaride karst fields, while it was sympatric with N.fodiens in remaining sites. The first principal component scores (PC1; 72.2% of variance explained), derived from principal components analysis of 13 cranial, mandibular and dental measurements, were used as the size factor. One-way ANOVA detected significant interpopulation variation in both species; intraspecific variation, however, was much more pronounced inN. anomalus. No latitudinal size pattern was found in N. fodiens (r = −0.42, p = 0.58), while mean PC1 scores correlated significantly and negatively with latitude inN. anomalus (r = −0.92, p = 0.004). Therefore, along a north to south transect,N. anomalus converged in size towards N. fodiens, which suggests that the former species occupies increasingly more aquatic habitats in the same direction. Individuals from allopatric populations ofN. anomalus from Slovenia and Bosnia and Herzegovina were, on average, larger than sympatric conspecific populations from the same latitudinal zone, which is consistent with the hypothesis of character displacement.

Key words

Bergmann’s rule character displacement Neomys anomalus Neomys fodiens semi-aquatic shrews 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams D. C. and Rohlf F. J. 2000. Ecological character displacement inPlethodon: biomechanical differences found from a geometric morphometric study. Proceedings of the National Academy of Science 97: 4106–4111.CrossRefGoogle Scholar
  2. Aitchison C. W. 1987. Review of winter trophic relations of soricine shrews. Mammal Review 17: 1–24.CrossRefGoogle Scholar
  3. Ashton K. G. 2002. Patterns of within-species body size variation of birds: strong evidence for Bergmann’s rule. Global Ecology and Biogeography 11: 505–523.CrossRefGoogle Scholar
  4. Bergmann C. 1847. Ueber die Verhältnisse der Wärmekönomie der Thiere zu ihrer Grösse. Gottinger Studien 3: 595–708.Google Scholar
  5. Bonacci O. 2004. Poljes. [In: Encyclopedia of caves and karst science. J. Gunn, ed]. Fitzroy Dearborn, New York: 599–600.Google Scholar
  6. Boyce M. S. 1978. Climatic variability and body size variation in the muskrats (Ondatra zibethicus) of North America. Oecologia 36: 1–19.CrossRefGoogle Scholar
  7. Brown W. L. and Wilson E. O. 1956. Character displacement. Systematic Zoology 5: 49–64.CrossRefGoogle Scholar
  8. Calder W. A. 1984. Size, function, and life history. Harvard University Press, Cambridge: 1–431.Google Scholar
  9. Carraway L. N. and Verts B. J. 2005. Assessment of variation in cranial and mandibular dimensions in geographical races ofSorex towbridgii. [In: Advances in the biology of shrews II. J. F. Merritt, S. Churchfield, R. Hutterrer and B. I. Sheftel, eds]. International Society of Shrew Biologists, New York: 139–153.Google Scholar
  10. Churchfield S. 1990. The natural history of shrews. Christopher Helm, London: 1–178.Google Scholar
  11. Churchfield S. and Rychlik L. 2006. Diets and coexistence inNeomys andSorex shrews in Białowieża forest, eastern Poland. Journal of Zoology, London 269: 381–390.CrossRefGoogle Scholar
  12. Churchfield S., Rychlik L., Yavrouyan E. and Turlejski K. 2006. First results on the feeding ecology of the Transcaucasian water shrewNeomys teres (Soricomorpha: Soricidae) from Armenia. Canadian Journal of Zoology 84: 1853–1858.CrossRefGoogle Scholar
  13. Dickman C. R. 1988. Body size, prey size, and community structure in insectivorous mammals. Ecology 69: 569–580.CrossRefGoogle Scholar
  14. Dickman C. R. 1991. Mechanisms of competition among insectivorous mammals. Oecologia 85: 464–471.CrossRefGoogle Scholar
  15. Doebeli M. 1996. An explicit genetic model for ecological character displacement. Ecology 77: 510–520.CrossRefGoogle Scholar
  16. Findley J. S. 1989. Morphological patterns in rodent communities of soutwestern North America. [In: Patterns in the structure of mammalian communities. D. W. Morris, Z. Abramsky, B. J. Fox and M. R. Willig, eds]. Texas Tech University Press, Lubbock: 253–263.Google Scholar
  17. Fordyce J. A. 2006. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. The Journal of Experimental Biology 209: 2377–2383.CrossRefPubMedGoogle Scholar
  18. Geist V. 1987. Bergmann’s rule is invalid. Canadian Journal of Zoology 65: 1935–1038.CrossRefGoogle Scholar
  19. Grant P. R. and Grant B. R. 2006. Evolution of character displacement in Darwin’s finches. Science 313: 224–226.CrossRefPubMedGoogle Scholar
  20. Hanski I. and Kaikusalo A. 1989. Distribution and habitat selection of shrews in Finland. Annales Zoologici Fennici 26: 339–348.Google Scholar
  21. Hutterer R. 1985. Anatomical adaptations of shrews. Mammal Review 15: 43–55.CrossRefGoogle Scholar
  22. Kendeight S. C. 1969. Tolerance of cold and Bergmann’s rule. Auk 86: 13–25.Google Scholar
  23. Krushinska N. L. and Pucek Z. 1989. Ethological study of sympatric species of European water shrews. Acta Theriologica 34: 269–285.Google Scholar
  24. Krushinska N. L. and Rychlik L. 1993. Intra- and interspecific antagonistic behavious in two sympatric species of water shrews:Neomys fodiens andN. anomalus. Journal of Ethology 11: 11–21.CrossRefGoogle Scholar
  25. Kryštufek B., Davison A. and Griffiths H. I. 2000. Evolutionary beiogeography of water shrews (Neomys spp.) in the western Palaearctic region. Canadian Journal of Zoology 78: 1616–1625.CrossRefGoogle Scholar
  26. Lemen C. A. 1983. The effectiveness of methods of shape analysis. Fieldiana Zoology N.S. 15: 1–17.Google Scholar
  27. Lindstedt S. L. and Boyce M. S. 1985. Seasonality, fasting endurance, and body size in mammals. The American Naturalist 125: 873–878.CrossRefGoogle Scholar
  28. Mayr E. 1963. Animal species and evolution. Harvard University Press, Cambridge, MA: 1–797.Google Scholar
  29. McNab B. K. 1971. On the ecological significance of Bergmann’s rule. Ecology 52: 845–854.CrossRefGoogle Scholar
  30. McNab B. K. 2006. The evolution of energetics in eutherian “insectivorans”: an alternate approach. Acta Theriologica 51: 113–128.CrossRefGoogle Scholar
  31. Meiri S. and Dayan T. 2003. On the validity of Bergmann’s rule. Journal of Biogeography 30: 331–351.CrossRefGoogle Scholar
  32. Mitchell-Jones A., Amori G., Bogdanowicz W., Kryštufek B., Reijnders P. J. H., Spitzenberger F., Stubbe M., Thissen J. B. M., Vohralik V. and Zima J. 1999. The atlas of European mammals. Poyser Natural History, London: 1–484.Google Scholar
  33. Niethammer J. and Krapp F. 1990. Handbuch der Säugetiere Europas. Band 3/I: Insektenfresser, Herrentiere. Aula-Verlag, Wiesbaden: 1–523.Google Scholar
  34. Ochocińska D. and Taylor J. R. E. 2003. Bergmann’s rule in shrews: geographical variation of body size in Palearctic Sorex species. Biological Journal of the Linnean Society 78: 365–381.CrossRefGoogle Scholar
  35. Pfenning D. W., Rice A. M. and Martin R. A. 2006. Ecological opportunity and phenotypic plasticity interact to promote character displacement and species coexistence. Ecology 87: 769–779.CrossRefGoogle Scholar
  36. Pucek Z. 1964. The structure of the glans penis inNeomys Kaup, 1929 as a taxonomic character. Acta Theriologica 9: 374–377.Google Scholar
  37. Rácz G. and Demeter A. 1998. Character displacement in mandible shape and size in two species of water shrews (Neomys, Mammalia: Insectivora). Acta Zoologica Academiae Scientarum Hungaricae 44: 165–175.Google Scholar
  38. Rychlik L., Ramalhinho G. and Polly D. 2006. Response to environmental factors and competition: skull, mandible, and tooth shape in Polish water shrews (Neomys, Soricidae, Mammalia). Journal of Zoological Systematics and Evolutionary Research 44: 339–351.CrossRefGoogle Scholar
  39. Schluter D. 2000. Ecological character displacement and adaptive radiation. The American Naturalist 156: S4-S16.CrossRefGoogle Scholar
  40. Schluter D. and McPhail J. D. 1992. Ecological character displacement and speciation in sticklebacks. The American Naturalist 140: 85–108.CrossRefPubMedGoogle Scholar
  41. Snell R. R. and Cunnison K. M. 1983. Relation of geographic variation in the skull ofMicrotus pennsylvanicus to climate. Canadian Journal of Zoology 61: 1232–1241.CrossRefGoogle Scholar
  42. Sneth P. H. A. and Sokal R. R. 1973. Numerical taxonomy: the principles and practice of numerical classification. Freeman and Company, San Francisco: 1–962.Google Scholar
  43. Taper M. L. and Case T. J. 1992. Coevolution among competitors. Oxford Surveys in Evolutionary Biology 86: 63–109.Google Scholar
  44. White T. A. and Searle J. B. 2007. Factors explaining increased body size in common shrews (Sorex araneus) on Scottish islands. Journal of Biogeography 34: 356–363.CrossRefGoogle Scholar
  45. Wolff J. O. and Guthrie R. D. 1985. Why are aquatic small mammals so large? Oikos 45: 365–373.CrossRefGoogle Scholar
  46. Yom-Tov Y. and Geffen E. 2006. Geographic variation in body size: the effects of ambient temperature and precipitation. Oecologia 148: 213–218.CrossRefPubMedGoogle Scholar
  47. Yom-Tov Y. and Yom-Tov J. 2005. Global warming, Bergmann’s rule and body size in the masked shrewSorex cinereus Kerr in Alaska. Journal of Animal Ecology 74: 803–808.CrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Bialowieza, Poland 2008

Authors and Affiliations

  • Boris Kryštufek
    • 1
  • Aila Quadracci
    • 2
  1. 1.Science and Research CentreUniversity of PrimorskaKoperSlovenia
  2. 2.Department of Animal ScienceUniversity of UdineUdineItaly

Personalised recommendations