Journal of the Brazilian Computer Society

, Volume 15, Issue 1, pp 13–25 | Cite as

A standards-based framework to foster geospatial data and process interoperability

  • Gilberto Zonta Pastorello
  • Rodrigo Dias Arruda Senra
  • Claudia Bauzer Medeiros
Open Access
Article

Abstract

The quest for interoperability is one of the main driving forces behind international organizations such as OGC and W3C. In parallel, a trend in systems design and development is to break down GIS functionalities into modules that can be composed in an ad hoc manner. This component-driven approach increases flexibility and extensibility. For scientists whose research involves geospatial analysis, however, such initiatives mean more than interoperability and flexibility. These efforts are progressively shielding these users from having to deal with problems such as data representation formats, communication protocols or pre-processing algorithms. Once scientists are allowed to abstract from lower level concerns, they can shift their focus to the design and implementation of the computational models they are interested in. This paper analyzes how interoperability and componentization efforts have this underestimated impact on the design and development perspective. This discussion is illustrated by the description of the design and implementation of WebMAPS, a geospatial information system to support agricultural planning and monitoring. By taking advantage of new results in the above areas, the experience with WebMAPS presents a road map to leverage system design and development by the seamless composition of distributed data sources and processing solutions.

Keywords

geospatial data geospatial processing geospatial interoperability data publication process publication 

References

  1. 1.
    Aditya T, Kraak MJ. Aim4GDI: facilitating the synthesis of GDI resources through mapping and superimpositions of metadata summaries.Geoinformatica 2007; 11(4):459–478.CrossRefGoogle Scholar
  2. 2.
    Agrawal H, Chafle G, Goyal S, Mittal S, Mukherjea S. An enhanced extract-transform-load system for migrating data in Telecom billing. In:IEEE 24th International Conference on Data Engineering; 2008; Cancun. p. 1277–1286.Google Scholar
  3. 3.
    Balakrishnan H, Balazinska M, Carney D, Çetintemel U, Cherniack M, Convey C. et al. Retrospective on Aurora.The VLDB Journal 2004; 13(4):370–383.CrossRefGoogle Scholar
  4. 4.
    Brabec F, Samet H. Client-based spatial browsing on the World Wide Web.IEEE Internet Computing 2007; 11(1):52–59.CrossRefGoogle Scholar
  5. 5.
    Brown ME, Pinzon JE, Didan K, Morisette JT, Tucker CJ. Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM + sensors.IEEE Transactions on Geoscience and Remote Sensing 2006; 44(7):1787–1793.CrossRefGoogle Scholar
  6. 6.
    Bryant R, Forester R, Hawkes J. Filesystem performace and scalability in Linux 2.4.17. In:Proceedings of the USENIX Annual Technical Conference (FREENIX Track); 2002; Monterey. p. 259–274.Google Scholar
  7. 7.
    Cai G. Contextualization of geospatial database semantics for Human-GIS Interaction.Geoinformatica 2007; 11(2):217–237.CrossRefGoogle Scholar
  8. 8.
    Campbell AT, Eisenman SB, Lane ND, Miluzzo E, Peterson RA, Lu H. et al. The rise of people-centric sensing.Internet Computing, IEEE 2008; 12(4):12–21.CrossRefGoogle Scholar
  9. 9.
    Chambers LH, Alston EJ, Diones DD, Moore SW, Oots PC, Phelps CS. The MY NASA DATA Project: tools for knowledge sharing and discovery. In:Proceedings of the 6 th Annual NASA Earth Science Technology Conference; 2006; College Park.Google Scholar
  10. 10.
    Open Geospatial Consortium. OpenGIS Implementation Specification for Geographic Information. Simple Feature Access. Available from: 〈http://www. opengeospatial.org/standards/sfa〉. Access in: 09/2008.Google Scholar
  11. 11.
    Cornillon P, Caron J, Burk T, Holloway D. Data access interoperability within IOOS. In:Proceedings of MTS/IEEE OCEANS; 2005; Washington. p. 1790–1792.Google Scholar
  12. 12.
    Crescenzi V, Mecca G. Automatic information extraction from large websites.Journal of the ACM 2004; 51(5):731–779.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Critchlow T, Fidelis K, Ganesh M, Musick R, Slezak T. DataFoundry: information management for scientific data.IEEE Transactions on Information Technology in Biomedicine 2000; 4(1):52–57.CrossRefGoogle Scholar
  14. 14.
    Cuff D, Hansen M, Kang J. Urban sensing: out of the woods.Communications of the ACM 2008; 51(3):24–33.CrossRefGoogle Scholar
  15. 15.
    Daltio J, Medeiros CB. Aondê: an ontology web service for interoperability across biodiversity applications.Information Systems 2008; 33(7–8):724–753.CrossRefGoogle Scholar
  16. 16.
    Daltio J, Medeiros CB, Gomes L Jr., Lewinsohn TM. A framework to process complex biodiversity queries. In:Proceedings of the ACM Symposium on Applied Computing; 2008; Fortaleza. p. 2293–2297.Google Scholar
  17. 17.
    Fielding RT.Architectural styles and the design of network-based software architectures [Thesis]. Irvine: University of California; 2000.Google Scholar
  18. 18.
    Ganesan D, Estrin D, Heidemann J. Dimensions: why do we need a new data handling architecture for sensor networks?ACM SIGCOMM Computer Communication Review 2003; 33(1):143–148.CrossRefGoogle Scholar
  19. 19.
    Goodchild MF, Egenhofer MJ, Fegeas R, Kottman CA. (Ed.).Interoperating Geographic Information Systems. Kluwer; 1999.Google Scholar
  20. 20.
    Haas L. Beauty and the beast: the theory and practice of information integration. In:Proceedings of the 11th International Conference on Database Theory 2007; Barcelona. p. 28–43.Google Scholar
  21. 21.
    Habegger B, Quafafou M. Building web information extraction tasks. In:Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence; 2004; Beijing. p. 349–355.Google Scholar
  22. 22.
    Halevy AY, Ashish N, Bitton D, Carey M, Draper D, Pollock J, Rosenthal A, Sikka V. Enterprise information integration: successes, challenges and controversies. In:Proceedings of the 24th ACM SIGMOD International Conference on Management of Data; 2005; Baltimore. p. 778–787.Google Scholar
  23. 23.
    Hellerstein JM, Hong W, Madden S. The sensor spectrum: technology, trends and requirements.SIGMOD Record 2003; 32(4):22–27.CrossRefGoogle Scholar
  24. 24.
    Huynh D, Mazzocchi S, Karger D. Piggy bank: experience the semantic web inside your web browser.Web Semantics: Science, Services and Agents on the World Wide Web 2007; 5(1):16–27.CrossRefGoogle Scholar
  25. 25.
    INSPIRE. Infrastructure for spatial information in the europe. Available from: 〈http://www.ec-gis.org/ inspire/〉. Access in: 09/2008.Google Scholar
  26. 26.
    Jang SG, Kim TJ. Modeling an interoperable multimodal travel guide system using the iso 19100 series of international standards. In:Proceedings of the 14th Annual ACM International Symposium on Advances in Geographic Information Systems; 2006; Arlington. p. 115-122.Google Scholar
  27. 27.
    Jarke M, Jeusfeld MA, Quix C, Vassiliadis P. Architecture and quality in data warehouses: an extended repository approach.Information Sytems 1999; 24(3):229–253.CrossRefGoogle Scholar
  28. 28.
    Kantere V, Sellis T. Handling spatial data in distributed environments. In:Proceedings of the 15th Annual ACM International Symp. on Advances in Geographic Information Systems; 2007; Seattle.Google Scholar
  29. 29.
    Kosala R, Blockeel H. Web mining research: a survey.ACM SIGKDD Explorations Newsletter 2000; 2(1):1–15.CrossRefGoogle Scholar
  30. 30.
    Fu L, Soh LK, Samal A. Techniques for computing fitness of use (FoU) for time series datasets with applications in the geospatial domain.Geoinformatica 2008; 12(1):91–115.CrossRefGoogle Scholar
  31. 31.
    Laender AHF, Ribeiro-Neto BA, Silva AS, Teixeira JS. A brief survey of web data extraction tools.SIGMOD Record 2002; 31(2):84–93.CrossRefGoogle Scholar
  32. 32.
    Lew MS, Sebe N, Djeraba C, Jain R. Content-based multimedia information retrieval: state of the art and challenges.ACM Transactions on Multimedia Computing, Communications, and Applications 2006; 2(1):1–19.CrossRefGoogle Scholar
  33. 33.
    Lima JGS, Medeiros CB, Assad ED. Integration of heterogeneous pluviometric data for crop forecasts. In:Proceedings of the 5th Brazilian Symposium on GeoInformatics; 2003; Campos do Jordão. Article 14.Google Scholar
  34. 34.
    Lu CT, Santos RF Jr., Sripada LN, Kou Y. Advances in GML for Geospatial Applications.Geoinformatica 2007; 11(1):131–157.CrossRefGoogle Scholar
  35. 35.
    Mariote LE, Medeiros CB, Lee I. Diagnosing similarity of oscillation trends in time series. In:Proceedings of the 7th IEEE International Conference on Data Mining Workshops; 2007; Omaha. p. 643–648.Google Scholar
  36. 36.
    Medeiros CB, Alencar AC. Data quality and interoperability in GIS (In Potuguese). In:Proceedings of the 1st Brazilian Symposium on GeoInformatics; 1999; Campinas.Google Scholar
  37. 37.
    NASA. MODIS Rapid Response System. Available from: 〈http://rapidfire.sci.gsfc.nasa.gov/〉. Access in: 09/2008.Google Scholar
  38. 38.
    NSF/NCGIA/OpenGIS.Proceedings of the International Conference and Workshop on Interoperating Geographic Information Systems; 1997. Available from: 〈http://www.ncgia.ucsb.edu/conf/interop97〉. Access in: 06/2008.Google Scholar
  39. 39.
    OGC. OpenGIS Reference Model (ORM). Available from: 〈http://portal.opengeospatial.org/files/?artifact_id=3836〉. Access in: 09/2008.Google Scholar
  40. 40.
    OGC. OpenGIS Web Processing Service. Available from: 〈http://www.opengeospatial.org/ standards/wps〉. Access in: 09/2008.Google Scholar
  41. 41.
    Open Geospatial Consortium, Inc. KML Implementation Standard. Available from: 〈http://www.opengeospatial.org/standards/kml/〉. Access in: 09/2008.Google Scholar
  42. 42.
    Pastorello Jr GZ, Daltio J, Medeiros CB. Multimedia semantic annotation propagation. In:Proceedings of the 1st IEEE International Workshop on Data Semantics for Multimedia Systems and Applications (DSMSA) — 10th IEEE Int. Symposium on Multimedia (ISM); 2008; Berkeley. p. 509–514.Google Scholar
  43. 43.
    Pastorello Jr GZ, Medeiros CB, Santanchè A. Accessing and processing sensing data. In:Proceedings of the 11th IEEE International Conference on Computational Science and Engineering; 2008; São Paulo. p. 353–360.Google Scholar
  44. 44.
    Pastorello Jr GZ, Senra RDA, Medeiros CB. Bridging the gap between geospatial resource providers and model developers. In:Proceedings of the 16th ACM International Conference on Advances in Geographic Information Systems; 2008; Irvine. p. 379–382.Google Scholar
  45. 45.
    Pinter Jr PJ, Hatfield JL, Schepers JS, Barnes EM, Moran MS, Daughtry CST, Upchurch DR. Remote sensing for crop management.Photogrammetric Engineering and Remote Sensing 2003; 69(6):647–664.Google Scholar
  46. 46.
    Rigaux P, Scholl M, Voisard A.Spatial databases: with application to GIS.: Morgan Kaufmann, Elsevier; 2001.Google Scholar
  47. 47.
    Ritter N, Ruth M. The GeoTiff data interchange standard for raster geographic images.International Journal of Remote Sensing 1997; 18(7):1637–1647.CrossRefGoogle Scholar
  48. 48.
    Simitsis A, Vassiliadis P, Sellis T. Optimizing ETL processes in data warehouses. In:Proceedings of the 21st International Conference on Data Engineering; 2005; Tokyo. p. 564–575.Google Scholar
  49. 49.
    Thakkar S, Knoblock CA, Ambite JL. Quality-driven geospatial data integration. In:Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems; 2007; Seattle. Article 16.Google Scholar
  50. 50.
    Ungerer MJ, Goodchild MF. Integrating spatial data analysis and GIS: a new implementation using the Component Object Model (COM).International Journal of Geographical Information Science 2002; 16(1):41–53.CrossRefGoogle Scholar
  51. 51.
    Van Leeuwen WJD, Huete AR, Laing TW. MODIS vegetation index compositing approach: a prototype with AVHRR data.Remote Sensing of Environment 1999; 69(3):264–280.CrossRefGoogle Scholar
  52. 52.
    Vance TC, Merati N, Mesick SM, Moore CW, Wright DJ. GeoModeler: tightly linking spatially-explicit models and data with a GIS for analysis and geovisualization. In:Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems; 2007; Seattle. Article 32.Google Scholar
  53. 53.
    Xue Y, Wan W, Li Y, Guang J, Bai L, Wang Y, Ai J. Quantitative retrieval of geophysical parameters using satellite data.Computer 2008; 41(4):33–40.CrossRefGoogle Scholar

Copyright information

© The Brazilian Computer Society 2009

Authors and Affiliations

  • Gilberto Zonta Pastorello
    • 1
  • Rodrigo Dias Arruda Senra
    • 1
  • Claudia Bauzer Medeiros
    • 1
  1. 1.Institute of ComputingUniversity of Campinas — UNICAMPCampinasBrazil

Personalised recommendations