Journal of the Brazilian Computer Society

, Volume 14, Issue 3, pp 31–49 | Cite as

CinBalada: A multiagent rhythm factory

  • Pablo Azevedo Sampaio
  • Geber Ramalho
  • Patrícia Tedesco
Open Access
Article

Abstrac

CinBalada is a system for automatic creation of polyphonic rhythmic performances by mixing elements from different musical styles. This system is based on agents that act as musicians playing percussion instruments in a drum circle. Each agent has to choose from a database the rhythm pattern of its instrument that satisfies the “rhythmic role” assigned to him in order to produce a collectivelyconsistent rhythmic performance. A rhythmic role is a concept that we proposed here with the objective of representing culture-specific rules for creation of polyphonic performances.

Keywords

rhythm composition rhythmic role multiagent system 

References

  1. [1]
    J. A. Biles. GenJam: A Genetic Algorithm for Generating Jazz Solos. InProceedings of the International Computer Music Conference, San Francisco, 1994.Google Scholar
  2. [2]
    J. Bilmes. Timing is of the Essence: Perceptual and Computational Techniques for Representing, Learning, and Reproducing Expressive Timing in Percussive Rhythm. MSc Thesis, Massachusetts Institute of Technology, Aug 1993.Google Scholar
  3. [3]
    A.R. Brown. Exploring Rhythmic Automata.Applications on Evolutionary Computing, volume 3449, Berlin: Springer-Verlag, 2005.Google Scholar
  4. [4]
    A. R. Burton. A Hybrid Neuro-Genetic Pattern Evolution System Applied to Musical Composition. PhD Thesis, University of Surrey (UK), 1998.Google Scholar
  5. [5]
    M. Dahia, H. Santana, E. Trajano, C. Sandroni, G. Cabral, G. Ramalho. Using Patterns to Generate Rhythmic Accompaniment for Guitar. In:Proceedings of Sound and Music Computing, Paris, 2004.Google Scholar
  6. [6]
    J. M. Diaz-Báñez, G. Farigu, F. Gómez, D. Rappaport, G. Toussaint. El Compás Flamenco: A Phylogenetic Analysis. InProceedings of BRIDGES: Mathematical Connections in Art, Music and Science, Winfield (USA), pp. 61-70, 2004.Google Scholar
  7. [7]
    A. Eigenfeldt. The Creation of Evolutionary Rhythms within a Multi-Agent Networked Drum Ensemble. In: Proceedings of theInternational Computer Music Conference, Copenhagen, 2007.Google Scholar
  8. [8]
    T. Gifford, A. Brown. The Ambidrum: Automated Rhythmic Improvisation. In: Proceedings of the Australasian Computer Music Conference, pp. 44-49, Adelaide, Australia, 2006.Google Scholar
  9. [9]
    M. Gimenes, E. R. Miranda. A memetic approach to the evolution of rhythms in a society of software agents. In:Proceedings of the X Brazilian Symposium on Computer Music (SBCM 2005), 2005.Google Scholar
  10. [10]
    F. Gómez, A. Melvin, D. Rappaport, G. Toussaint. Mathematical Measures of Syncopation. InProceedings of BRIDGES: Mathematical Connections in Art, Music, and Science, Banff (Canada), pp.73–84, 2005.Google Scholar
  11. [11]
    K. Gustafson. The graphical representation of rhythm.Progress Reports from Oxford Phonetics (PROPH), 3, pp. 6–26, 1988.Google Scholar
  12. [12]
    M. Hart. Rhythm As A Tool For Healing and Health in The Aging process, Testimony Before the U.S. Senate Committee on Aging, 1991.Google Scholar
  13. [13]
    D. Horowitz. Generating Rhythms with Genetic Algorithms. InProceedings of the 1994 International Computer Music Conference, Aarhus (Denmark), 1994.Google Scholar
  14. [14]
    N. R. Jennings, P. Faratin, A. R. Lomuscio. Automated Negotiation. In:Proceedings of the 5th International Conference on Practical Application of Intelligent Agents and Multi-Agent Systems, PAAM, pp. 23-30, 2000.Google Scholar
  15. [15]
    F. Lerdahl, R. Jackendoff.A Generative Theory of Tonal Music. MIT Press, Cambridge, 1983.Google Scholar
  16. [16]
    J. London. Hierarchical Representations of Complex Meters. In:Proceedings of the 6th International Conference on Music, Perception and Cognition, Keele University (UK), 200.Google Scholar
  17. [17]
    J. M. Martins, M. Gimenes, J. Manzolli, A. Maia. Similarity Measures for Rhythmic Sequences. In:Proceedings of the X Brazilian Symposium on Computer Music (SBCM 2005), 2005.Google Scholar
  18. [18]
    J. M. Martins, E. R. Miranda. A Connectionist Architecture for the Evolution of Rhythms.Applications of Evolutionary Computing, volume 3907, Berlin: Springer-Verlag, 2006.Google Scholar
  19. [19]
    J. M. Martins, E. R. Miranda. Emergent Rhythmic Phrases in an A-Life Environment. In:Proceedings of the Workshop on Music and Artificial Life — European Conference of Artificial Life (ECAL), Lisbon (Portugal), 2007.Google Scholar
  20. [20]
    D. Murray-Rust. VirtuaLatin — Agent Based Percussive Accompaniment. MSc Thesis in Informatics, School of Informatics — University of Edinburgh, 2003.Google Scholar
  21. [21]
    P. Nauert. Division- and Addition-Based Models of Rhythm in a Computer-Assisted Composition System.Computer Music Journal, 31(sn4), pp. 59–70, Cambridge: MIT Press, 2007.Google Scholar
  22. [22]
    F. Pachet. Rhythms as Emerging Structures. InProceedings of the International Computer Music Conference 2000, Berlim, 2000.Google Scholar
  23. [23]
    G. Papadopoulos, G. Wiggins. AI Methods for Algorithmic Composition: A Survey, a Critical View and Future Prospects. InProceedings of the AISB’99 Symposium on Musical Creativity, Edinburgh, pp. 110–117, 1999.Google Scholar
  24. [24]
    A. Pazos, A. S. del Riego, J. Dorado, J. R. Cardalda. Genetic Music Compositor. InProceedings of the Congress of Evolutionary Computation 1999 (CEC’99), Washington, pp. 885-890, 1999.Google Scholar
  25. [25]
    M. Pearce. Generating Rhythmic Patterns: a Combined Neural and Evolutionary Approach. MSc Thesis in Artificial Intelligence, School of Informatics, University of Edinburgh, 2000.Google Scholar
  26. [26]
    M. T. Pearce, G. A. Wiggins. Towards a framework for the evaluation of machine compositions. InProceedings of the AISB’01 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences, York (England), pp. 22–32, 2001.Google Scholar
  27. [27]
    A. Pease, D. Winterstein, S. Colton. Evaluating machine creativity. InProceedings of the International Conference on Case Based Reasoning 2001, Vancouver, 2001.Google Scholar
  28. [28]
    M. Salazar. Batucadas de Samba. Lumiar Editora, Rio de Janeiro, 1991.Google Scholar
  29. [29]
    P. A. Sampaio, P. Tedesco; G. Ramalho. CInBalada: um Laboratório Multiagente de Geração de Ritmos de Percussão. In:Proceedings of the X Brazilian Symposium on Computer Music (SBCM 2005), 2005.Google Scholar
  30. [30]
    P. A. Sampaio. CInBalada — Um Laboratório Rítmico. Master’s Thesis. CIn (Center of Informatics) — UFPE (Federal University of Pernambuco), 2006.Google Scholar
  31. [31]
    C. de O. Santos, T. S. Resende.Batuque book maracatu: baque virado e baque solto. Lumiar, Recife, 2005.Google Scholar
  32. [32]
    I. Shmulevich, D. J. L. Povel. Measures of Temporal Pattern Complexity.Journal of New Music Research, 29(1), pp. 61–70, 2000.CrossRefGoogle Scholar
  33. [33]
    P. M. Todd, G. M. Werner. Franksteinian Methods for Evolutionary Music Composition. In: N. Griffith and P. M. Todd (eds.),Musical Networks — Parallel Distributed Perception and Performance. MIT Press, p. 313, 1999.Google Scholar
  34. [34]
    N. Tokui, H. Iba. Music Composition with Interactive Evolutionary Computation. In:Proceedings of the 3 rd International Conference on Generative Art, Milan, 2000.Google Scholar
  35. [35]
    G. Toussaint. A Mathematical Analysis of African, Brazilian and Cuban Clave Rhythms. InProceedings of BRIDGES: Mathematical Connections in Art, Music and Science, Towson (USA), 2002.Google Scholar
  36. [36]
    G. Toussaint. Classification and Phylogenetic Analysis of African Ternary Rhythm Timelines. InProceedings of BRIDGES: Mathematical Connections in Art, Music and Science, Granada (Spain), pp. 25–36, 2003.Google Scholar
  37. [37]
    G. Toussaint. Algorithmic, Geometric, and Combinatorial Problems in Computational Music Theory. InProceedings of X Encuentros de Geometria Computacional, Sevilla (Spain), pp. 101-107, 2003.Google Scholar
  38. [38]
    G. Toussaint. A Comparison of Rhythmic Similarity Measures. Technical report SOCS-TR-2004.6, School of Computer Science, McGill University (Canada), 2004.Google Scholar
  39. [39]
    G. Toussaint. The Geometry of Musical Rhythm. InProceedings of the Japan Conference on Discrete and Computational Geometry (JCDCG 2004), pp. 198–212, 2004.Google Scholar
  40. [40]
    G. Toussaint. Mathematical Features for Recognizing Preference in Sub-Saharan African Traditional Rhythm Timelines. InProceedings of the 3rd International Conference on Advances in Pattern Recognition (ICAPR 2005), Bath (UK), pp. 18–27, 2005.Google Scholar
  41. [41]
    D. Tzimeas, E. Mangina. A Dynamic GA-Based Rhythm Generator. Trends in Intelligent Systems and Computer Engineering, volume 6, pp. 57–73, Berlin: Springer-Verlag, 2008.Google Scholar

Copyright information

© The Brazilian Computer Society 2009

Authors and Affiliations

  • Pablo Azevedo Sampaio
    • 1
    • 2
  • Geber Ramalho
    • 1
  • Patrícia Tedesco
    • 1
  1. 1.Centro de InformáticaUniversidade Federal de Pernambuco (UFPE) Cidade UniversitáriaRecifeBrazil
  2. 2.Departamento de Estatística e InformáticaUniversidade Católica de Pernambuco (UNICAP)RecifeBrazil

Personalised recommendations