Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Amplification of DNA markers from scat samples of the least weaselMustela nivalis nivalis


To test the feasibility of using field-collected scats as a source of DNA in the study of the least weaselMustela nivalis nivalis Linnaeus, 1766, DNA was extracted from scat samples collected from captive weasels using a modified extraction protocol. Using universal primers, the control region of the mitochondrial genome was successfully amplified from scat-extracted DNA. This amplification resulted in two products; one equivalent in size and sequence to the product obtained from tissue-extracted weasel DNA, and the other slightly larger and equivalent in size and sequence to the domestic house mouseMus musculus, the food source of the captive weasels. This demonstrates the reliability of DNA extraction from scats, as well as the possibility, under favourable circumstances, of identifying the prey species from the same samples. In addition, we attempted to amplify microsatellite loci from both tissue and scat-extracted DNA using six primer pairs designed for other mustelids, the American minkMustela vison and the wolverineGulo gulo. While three loci, Mvi57 (American mink), Ggu216 and Ggu234 (wolverine), were found to be polymorphic in the least weasel, amplification of these loci from the scat extracted DNA was only successful for approximately half of the samples. Although further work is needed, the present results suggest that it is possible to use scats as a source of DNA in field studies of the least weasel.

This is a preview of subscription content, log in to check access.


  1. Albaugh G. P., Iyengar V., Lohani A., Malayeri M., Bala S. and Nair P. P. 1992. Isolation of exfoliated colonic epithelial cells, a novel, non-invasive approach to the study of cellular markers. International Journal of Cancer 52: 347–350.

  2. Chen S. and Evans G. A. 1990. A simple screening method for transgenic mice using the polymerase chain reaction. BioTechniques 8: 32–33.

  3. Constable J. J., Packer C., Collins D. A. and Pusey A. E. 1995. Nuclear DNA from primate dung. Nature 373: 393.

  4. Duffy A J., Landa A., O’Connell M., Statton C. and Wright J. M. 1998. Four polymorphic microsatellites in wolverine,Gulo gulo. Animal Genetics 29: 63–72.

  5. Flagstad Ø., Røed K., Stacy J. E. and Jakobsen K. S. 1999. Reliable noninvasive genotyping based on excremental PCR of nuclear DNA purified with a magnetic bead protocol. Molecular Ecology 8: 879–883.

  6. Fleming M. A., Ostrander E. A. and Cook J. A. 1999. Microsatellite markers for American mink (Mustela vison) and ermine (Mustela erminea). Molecular Ecology 8: 1352–1354.

  7. Hanski I., Hansson L. and Henttonen H. 1991. Specialist predators, generalist predators and the microtine rodent cycle. Journal of Animal Ecology 60: 353–367.

  8. Hanski I., Henttonen H., Korpimäki E., Oksanen L. and Turchin P. 2001. Small rodent dynamics and predation. Ecology 82: 1505–1520.

  9. Hanski I. and Korpimäki E. 1995. Microtine rodent dynamics in northern Europe: parameterized models for the predator-prey interaction. Ecology 76: 840–850.

  10. Hanski I., Turchin P., Korpimäki E. and Henttonen H. 1993. Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos. Nature 364: 232–235.

  11. Hansson L. and Henttonen H. 1985. Gradients in density variations of small rodents: the importance of latitude and snow cover. Oecologia 67: 394–402.

  12. Höss M., Kohn M., Pääbo S., Knauer F. and Schröder W. 1992. Excrement analysis by PCR. Nature 359: 199.

  13. Kocher T. D., Thomas W. K., Meyer A., Edwards S. V., Pääbo S., Villablanca F. X. and Wilson A. C. 1989. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences USA 86: 6196–6200.

  14. Kohn M. H., Knauer F., Stoffella A., Schröder W. and Pääbo S. 1995. Conservation genetics of the European brown bear — a study using excremental PCR of nuclear and mitochondrial sequences. Molecular Ecology 4: 95–103.

  15. Kohn M. H. and Wayne R. K. 1997. Facts from faeces revisited. Trends in Ecology and Evolution 12: 223–227.

  16. Kohn M. H., York E. C., Kamradt D. A., Haught G., Sauvajot R. M. and Wayne R. K. 1999. Estimating population size by genotyping faeces. Proceedings of Royal Society of London B 266: 657–663.

  17. Korpimäki E., Norrdahl K. and Rinta-Jaskari T. 1991. Responses of stoats and least weasels to fluctuating vole abundances: is the low phase of the vole cycle due to mustelid predation? Oecologia 88: 552–561.

  18. Korpimäki E., Norrdahl K. and Valkama J. 1994. Reproductive investment under fluctuating predation risk: microtine rodents and small mustelids. Evolutionary Ecology 8: 357–368.

  19. O’Connell M., Wright J. M. and Farid A. 1996. Development of PCR primers for nine polymorphic American minkMustella vison microsatellite loci. Molecular Ecology 5: 311–312.

  20. Paxinos E., Mcintosh C., Ralls K. and Fleischer R. 1997. A noninvasive method for distinguishing among canid species: amplification and enzyme restriction of DNA from dung. Molecular Ecology 6: 483–486.

  21. Reed J. Z., Tollit D. J., Thompson P. M. and Amos W. 1997. Molecular scatology: the use of molecular genetic analysis to assign species, sex and individual identity to seal faeces. Molecular Ecology 6: 225–234.

  22. Sundell J. and Norrdahl K. 2002. Body size-dependent refuges in voles: an alternative explanation of the chitty effect. Annales Zoologici Fennici 39 (in press).

  23. Taberlet P., Camarro J-J., Griffin S., Uhres E., Hanotte O., Waits L. P., Dubois-Paganon C., Burke T. and Bouvet J. 1997. Non-invasive genetic tracking of the endangered Pyrenean brown bear population. Molecular Ecology 6: 869–876.

  24. Taberlet P. and Luikart G. 1999. Non-invasive genetic sampling and individual identification. Biological Journal of the Linnean Society 68: 41–55.

  25. Tikel D., Blair D. and Marsh H. D. 1996. Marine mammal faeces as a source of DNA. Molecular Ecology 5: 456–457.

  26. Turchin P. and Hanski I. 1997. An empirically based model for latitudinal gradient in vole population dynamics. The American Naturalist 149: 842–874.

  27. Van Etten R. A., Walberg M. W. and Clayton D. A. 1980. Precise localization and nucleotide sequence of the two mouse mitochondrial rRNA genes and three immediately adjacent novel tRNA genes. Cell 22: 157–170.

  28. Walker C. W., Vila C., Landa A., Linden M. and Ellegren H. 2001. Genetic variation and population structure in Scandinavian wolverine (Gulo gulo) populations. Molecular Ecology 10: 53–63.

  29. Wasser S. K., Houston C. S., Koehler G. M., Cadd G. G. and Fain S. R. 1997. Techniques for application of faecal DNA methods to field studies of Ursids. Molecular Ecology 6: 1091–1097.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, R., Painter, J.N. & Hanski, I. Amplification of DNA markers from scat samples of the least weaselMustela nivalis nivalis . Acta Theriol 47, 425–431 (2002). https://doi.org/10.1007/BF03192467

Download citation

Key words

  • mustelids
  • faeces
  • control region
  • microsatellites