Acta Theriologica

, Volume 46, Issue 4, pp 375–384

High mtDNA haplotype diversity among introduced Swedish brown haresLepus europaeus

  • Carl-Gustaf Thulin
  • Hakan Tegelström


The brown hareLepus europaeus Pallas, 1778 occurs naturally in central Eurasia, but has been introduced to parts of northern Europe, South- and North America, Australia and New Zealand. Brown hares were introduced to Sweden from central Europe for hunting purposes during the 19th century. We investigated how the human--mediated brown hare colonisation of Sweden is reflected in the amount of genetic variation present by assessing variation and composition of mitochondrial DNA (mtDNA) lineages among Swedish brown hares. MtDNA from a total of 40 brown hare specimens from 15 localities were analysed for Restriction Fragment Length Polymorphisms. The haplotype diversity is surprisingly high (0.893 ± 0.002) when compared to the mtDNA diversity among brown hares on the European continent as well as to other mammalian species. Admixture of haplotypes from different source populations combined with a reduced effect of random genetic drift and a relaxed selection pressure due to rapid population growth after introduction are mechanisms that are likely to account for the observed high mtDNA haplotype diversity.

Key words

Lepus europaeus mtDNA diversity introductions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson A.-C., Thulin C.-G. and Tegelström H. 1999. Applicability of rabbit microsatellite primers for studies of hybridisation between an introduced and a native hare species. Hereditas 130: 309–315.CrossRefPubMedGoogle Scholar
  2. Avise J. C. 2000. Phylogeography: The history and formation of species. Harward University Press, Cambridge, Massachusetts: 1–447.Google Scholar
  3. Avise J. C., Lansman R. A. and Shade R. O. 1979. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genusPeromyscus. Genetics 92: 279–295.PubMedGoogle Scholar
  4. Biju-Duval C., Ennafaa H., Dennebouy N., Monnerot M., Mignotte F., Soriguer R. C., El Gaaïed A., El Hili A. and Mounolou J.-C. 1991. Mitochondrial DNA evolution in Lagomorphs: Origin of systematic heteroplasmy and organization of diversity in European rabbits. Journal of Molecular Evolution 33: 92–102.CrossRefGoogle Scholar
  5. Boom J. D. G., Boulding E. G. and Beckenbach A.T. 1994. Mitochondrial DNA variation in introduced populations of Pacific oysters,Crassostrea gigas, in British Columbia. Canadian Journal of Fishery and Aquatic Sciences 51: 1608–1614.CrossRefGoogle Scholar
  6. Carson H. L. and Templeton A. R. 1984. Genetic revolutions in relation to speciation phenomena: the founding of new populations. Annual Review of Ecology and Systematics 15: 97–131.CrossRefGoogle Scholar
  7. Chapman R. W. 1989. Mitochondrial and nuclear gene dynamics of introduced populations ofLepomis macrochirus. Genetics 123: 399–404.PubMedGoogle Scholar
  8. Cronin M. A., Bodkin J., Ballachey B., Estes J. and Patton J. C. 1996. Mitochondrial-DNA variation among subspecies and populations of sea otters (Enhydra lutra). Journal of Mammalogy 77: 546–557.CrossRefGoogle Scholar
  9. Ellegren H., Hartman G., Johansson M. and Andersson L. 1993. Major histocompatibility complex monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers. Proceedings of the Natural Academy of Sciences USA 90: 8150–8153.CrossRefGoogle Scholar
  10. Ennafaa H., Monnerot M., El Gaaïed A. and Mounolou J. C. 1987. Rabbit mitochondrial DNA: preliminary comparison between some domestic and wild animals. Genetics Selection Evolution 19: 279–288.CrossRefGoogle Scholar
  11. Fedorov V., Jaarola M. and Fredga K. 1996. Low mitochondrial DNA variation and recent colonization of Scandinavia by the wood lemmingMyopus shisticolor. Molecular Ecology 5: 577–581.CrossRefGoogle Scholar
  12. Fedorov V. B., Fredga K. and Jarrel G. H. 1999. Mitochondrial DNA variation and the evolutionary history of chromosome races of collared lemmings (Dicrostonyx) in the Eurasian arctic. Journal of Evolutionary Biology 12: 134–145.CrossRefGoogle Scholar
  13. Felsenstein J. 1993. PHYLIP 3.5 (Phylogeny Inference Package). Department of Genetics, University of Washington, Seattle.Google Scholar
  14. Frylestam B. 1990. [Learn to know the brown hare]. Schmidts Boktryckeri AB, Helsingborg: 1–47. [In Swedish]Google Scholar
  15. Guillemette J. G. and Lewis P. N. 1983. Detection of subnanogram quantities of DNA and RNA on native and denaturing polyacrylamide and agarose gels by silver staining. Electrophoresis 4: 92–94.CrossRefGoogle Scholar
  16. Hartl G. B., Suchentrunk F., Nadlinger K. and Willing R. 1993. An integrative analysis of genetic differentiation in the brown hareLepus europaeus based on morphology, allozymes and mitochondrial DNA. Acta Theriologica 38: 33–57.Google Scholar
  17. Hauser L., Carvalho G. R. and Pitcher T. J. 1995. Morphological and genetic differentiation of the African clupeidLimnthrissa miodon 34 years after its introduction to lake Kivu. Journal of Fish Biology 47: 127–144.CrossRefGoogle Scholar
  18. Jaarola M. and Tegelström H. 1995. Colonization history of Fennoscandian field voles (Microtus agrestis) revealed by mitochondrial DNA. Molecular Ecology 4: 299–310.CrossRefPubMedGoogle Scholar
  19. Jones C. S., Tegelström H., Latchman D. S. and Berry R. J. 1988. An improved rapid method for mitochondrial DNA isolation suitable for use in the study of closely related populations. Biochemical Genetics 26: 83–88.CrossRefPubMedGoogle Scholar
  20. Lansman R. A., Shade R. O., Shapira J. F. and Avise J. C. 1981. The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. Journal of Molecular Evolution 17: 214–226.CrossRefPubMedGoogle Scholar
  21. Lehman N. and Wayne R. K. 1991. Analysis of coyote mitochondrial DNA genotype frequencies: estimation of the effective number of alleles. Genetics 128: 405–416.PubMedGoogle Scholar
  22. Lever C. 1994. Naturalized animals: The ecology of successfully introduced species. University Press, Cambridge: 1–350.Google Scholar
  23. Lönnberg E. 1905. On hybrids betweenLepus timidus L. andLepus europaeus Pall. from southern Sweden. Proceedings of the Zoological Society of London 1:278–2877.Google Scholar
  24. McClenaghan L. R. Jr, Berger J. and Truesdale H. D. 1990. Founding lineages and genic variability in plains Bison (Bison bison) from Badlands National Park, South Dakota. Conservation Biology 4: 285–289.CrossRefGoogle Scholar
  25. McElroy D., Moran P., Bermingham E. and Kornfield I. 1992. REAP: An integrated environment for the manipulation and phylogenetic analysis of restriction data. Journal of Heredity 83: 157–158.PubMedGoogle Scholar
  26. Mignotte F., Gueride M., Champagne A. M. and Mounolou J. C. 1990. Direct repeats in the noncoding region of rabbit mitochondrial DNA: involvement in the generation of intra- and inter-individual heterogeneity. European Journal of Biochemistry 194: 561–571.CrossRefPubMedGoogle Scholar
  27. Mitchell-Jones A. J., Amori G., Bogdanowicz W., Krystufek B., Reijnders P. J. H., Spitzenberger F., Stubbe M., Thissen J. B. M., Vohralik V. and Zima J. 1999. Atlas of European mammals. Academic Press, London: 1–484.Google Scholar
  28. Nei M. 1987. Molecular evolutionary genetics. Columbia University Press, New York: 1–512.Google Scholar
  29. Nei M., Maruyama T. and Chakraborty R. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1–10.CrossRefGoogle Scholar
  30. Petit E., Aulagnier S., Vaiman D., Bouissou C. and Crouau-Roy B. 1997. Microsatellite variation in an introduced mouflon population. Journal of Heredity 88: 517–520.PubMedGoogle Scholar
  31. Plante Y., Boag P. T. and White B. N. 1989. Macrogeographic variation in mitochondrial DNA of meadow voles (Microtus pennsylvanicus). Canadian Journal of Zoology 67: 158–167.CrossRefGoogle Scholar
  32. Ramey II R. R. 1995. Mitochondrial DNA variation, population structure, and evolution of mountain sheep in the south-western United States and Mexico. Molecular Ecology 4: 429–439.CrossRefPubMedGoogle Scholar
  33. Randi E. and Apollonio M. 1988. Low biochemical variability in European fallow deer (Dama dama L.): natural bottlenecks and the effects of domestication. Heredity 61: 405–410.CrossRefPubMedGoogle Scholar
  34. Riddle B. R., Honeycott R. L. and Lee P. L. 1993. Mitochondrial DNA phylogeography in northern grasshopper mice (Onychomys leucogaster) — the influence of Quaternaty climatic oscillations on population dispersion and divergence. Molecular Ecology 2: 183–193.CrossRefPubMedGoogle Scholar
  35. Roff D. A. and Bentzen P. 1989. The statistical analysis of mitochondrial DNA polymorphisms: C2 and the problem of small samples. Molecular Biology and Evolution 6: 539–545.PubMedGoogle Scholar
  36. Sjöberg G. 1996. Genetic characteristics of introduced birds and mammals. Wildlife Biology 2: 159–164.Google Scholar
  37. Sjögren B. 1971. [Small mammals in the North]. Zindermans, Göteborg: 1–158. [In Swedish]Google Scholar
  38. Suchentrunk F., Michailov C., Markov G. and Haiden A. 2000. Population genetics of Bulgarian brown hares (Lepus europaeus): Allozymic diversity at a zoogeographical crossroad. Acta Theriologica 45: 1–12.Google Scholar
  39. Tegelström H. 1986. Mitochondrial DNA in natural populations: An improved routine for the screening of genetic variation based on sensitive silver staining. Electrophoresis 7: 226–229.CrossRefGoogle Scholar
  40. Tegelström H. and Sjöberg G. 1995. Introduced Swedish Canada geese (Branta canadensis) have low levels of genetic variation as revealed by DNA fingerprinting. Journal of Evolutionary Biology 8: 195–207.CrossRefGoogle Scholar
  41. Thulin C.-G., Jaarola M. and Tegelström H. 1997. The occurrence of mountain hare mitochondrial DNA in wild brown hares. Molecular Ecology 6: 463–467.CrossRefPubMedGoogle Scholar
  42. Upholt W. B. 1977. Estimation of DNA sequence divergence from comparisons of restriction endonuclease digests. Nucleic Acids Research 4: 1257–1265.CrossRefPubMedGoogle Scholar
  43. Wade M. J., McKnight M. L. and Shaffer H. B. 1994. The effect of instructured colonization on nuclear and cytoplasmic genetic diversity. Evolution 48: 1114–1120.CrossRefGoogle Scholar

Copyright information

© Mammal Research Institute, Bialowieza, Poland 2001

Authors and Affiliations

  • Carl-Gustaf Thulin
    • 1
  • Hakan Tegelström
    • 1
  1. 1.Department of Conservation Biology and Genetics, EBCUppsala UniversityUppsalaSweden

Personalised recommendations