Skip to main content
Log in

Rapidly distinguishing reversible and irreversible CYP450 inhibitors by using fluorometric kinetic analyses

  • Published:
European Journal of Drug Metabolism and Pharmacokinetics Aims and scope Submit manuscript

Summary

In this study we have evaluated the reliability of a fluorescence-based method used for rapid identification of irreversible CYP inhibitors (mechanism-based inhibitors). This was accomplished by comparing the time-dependence pattern of IC50 values from fluorometric kinetic measurements. For irreversible CYP inhibitors, IC50 values decreased as incubation proceeded. This was due to progressive inactivation of corresponding enzymes by reactive metabolites generated during the incubation. This change pattern was confirmed using a number of known irreversible CYP inhibitors, including furafylline, midazolam, erythromycin, clarithromycin, oleandomycin, 17α-ethynylestradiol and verapamil. The pattern was different in reversible inhibition, depending upon the compounds tested in the fluorometric kinetic assay. For some compounds, such as clotrimazole, IC50 values remained relatively stable, whereas other compounds, such as miconazole, terfenadine and ketoconazole showed a significant increase with incubation time. Monitoring tested compounds by LC-MS/MS during the incubation confirmed that increases of IC50 were probably caused by the loss of inhibitors, resulting from either metabolic degradation, or non-specific binding to microsomal proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. von Moltke L.L; Greenblatt D J; Duan S X; Harmatz J S; Shader R I In vitro prediction of the terfenadine-ketoconazole pharmacokinetic interaction. J. Clin. Pharm. (1994), 34 (12), 1222–1227.

    CAS  Google Scholar 

  2. Griffin J.P. The withdrawal of mibefradil (Posicor). Adverse Drug Reactions and Toxicological Reviews (1998), 17(2–3), 59–60.

    CAS  PubMed  Google Scholar 

  3. Lin, J. H.; Lu, A. Y. H., Inhibition and induction of cytochrome P450 and the clinical implications. Clin. Pharmacokinet. (1998), 35(5), 361–390.

    Article  CAS  PubMed  Google Scholar 

  4. Yan Z.; Caldwell G. W. Metabolism profilling, and cytochrome P450 inhibition & induction in drug discovery. Curr. Top. Med. Chem. (2001), 1(5), 403–425.

    Article  CAS  PubMed  Google Scholar 

  5. Chu, I.; Favreau, L.; Soares, T.; Lin, C.C.; Nomeir, A.A. Validation of higher-throughput high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry assays to conduct cytochrome P450s CYP2D6 and CYP3A4 enzyme inhibition studies in human liver microsomes. Rapid Comm. in Mass Spectr. (2000), 14(4), 207–214.

    Article  CAS  Google Scholar 

  6. Crespi, C. L.; Stresser, D. M. Fluorometric screening for metabolismbased drug-drug interactions. J. Pharm. Toxicol. Methods (2001), 44(1), 325–331.

    Article  Google Scholar 

  7. Crespi, C. L.; Miller, V. P.; Penman, B. W. Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal. Biochem. (1997), 248(1), 188–190.

    Article  CAS  PubMed  Google Scholar 

  8. Palamanda, J.R.; Casciano, C.N.; Norton, L.A.; Clement, R.P.; Favreau, L.; Lin, C-C.; Nomeir, A.A. Mechanism-based inactivation of CYP2D6 by 5-fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazineyl] pyrimidine. Drug Metab. Despos. (2001), 29(6), 863–867.

    CAS  Google Scholar 

  9. Racha, J.K.; Rettie, A.E.; Kunze, K.L. Mechanism-based inactivation of human cytochrome P450 1A2 by furafylline: detection of a 1:1 adduct to protein and evidence for the formation of a novel imidazomethide intermediate. Biochemistry (1998), 37(20), 7407–7419.

    Article  CAS  PubMed  Google Scholar 

  10. Silverman, R.B. Mechanism-based Enzyme Inactivation: Chemistry and Enzymology (vol. 1) CRC Press, Inc., 1988.

  11. Bennett, M.; Prueksaritanont, T.; Lin, J.H. Drug interactions with calcium channel blockers: possible involvement of metabolite-intermediate complexation with CYP3A. Drug Metab Dispos. (2000), 28(2), 125–130.

    CAS  Google Scholar 

  12. Khan, K.K.; He, Y.Q.; Domanski, T.L.; Halpert, J.R. Midazolam oxidation by cytochrome P450 3A4 and active-site mutants: an evaluation of multiple binding sites and of the metabolic pathway that leads to enzyme inactivation. Mole. Pharm. (2002), 61(3), 495–506.

    Article  CAS  Google Scholar 

  13. Zhang, W.; Ramamoorthy, Y.; Kilicarslan, T.; Nolte, H.; Tyndale, R.F.; Sellers, E.M. Inhibition of cytochromes P450 by antifungal imidazole derivatives. Drug Metab. Dispos. (2002), 30(3), 314–318.

    Article  CAS  PubMed  Google Scholar 

  14. Yun, C. H.; Okerholm, R. A.; Guengerich, F.P. Oxidation of the antihistaminic drug terfenadine in human liver microsomes: role of cytochrome P-450 3A(4) in N-dealkylation and C-hydroxylation. Drug Metab. Dispos. (1993) 21(3), 403–9.

    CAS  PubMed  Google Scholar 

  15. Obach, R. Scott. Nonspecific binding to microsomes: impact on scale-up of in vitro intrinsic clearance to hepatic clearance as assessed through examination of warfarin, imipramine, and propranolol. Drug Metab. Dispos. (1997), 25(12), 1359–1369.

    CAS  PubMed  Google Scholar 

  16. Lindstrom, T.D.; Hanssen, B.R.; Wrighton, S.A. Cytochrome P-450 complex formation by dirithromycin and other macrolides in rat and human livers. Antimicrob. Agents Chemother (1993), 37(2), 265–269.

    CAS  PubMed  Google Scholar 

  17. Sutton D; Butler A M; Nadin L; Murray M Role of CYP3A4 in human hepatic diltiazem N-demethylation: inhibition of CYP3A4 activity by oxidized diltiazem metabolites. J. Pharm. Exp. Ther. (1997), 282(1), 294–300.

    CAS  Google Scholar 

  18. Bapiro, T. E.; Egnell, A-C; Hasler, J. A.; Masimirembwa, C. M. Application of higher throughput screening (HTS) inhibition assays to evaluate the interaction of antiparasitic drugs with cytochrome P450S. Drug Metab. Dispos. (2001), 29(1), 30–35.

    CAS  PubMed  Google Scholar 

  19. Gibbs, Megan A.; Thummel, Kenneth E.; Shen, Danny D.; Kunze, Kent L. Inhibition of cytochrome P-4503A (CYP3A) in human intestinal and liver microsomes: comparison of KI values and impact of CYP3A5 expression. Drug Metab. Dispos. (1999), 27(2), 180–187.

    CAS  PubMed  Google Scholar 

  20. Jacobsen, W.; Kirchner, G.; Hallensleben, K.; Mancinelli, L.; Deters, M.; Hackbarth, I.; Benet, L.Z.; Sewing, K-F.; Christians, U. Comparison of cytochrome P-450-dependent metabolism and drug interactions of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors lovastatin and pravastatin in the liver. Drug Metab. Dispos. (1999), 27(2), 173–179.

    CAS  PubMed  Google Scholar 

  21. Bachus R; Bickel U; Thomsen T; Roots I; Kewitz H The O-demethylation of the antidementia drug galanthamine is catalysed by cytochrome P450 2D6. Pharmacogenetics (1999), 9(6), 661–668.

    Article  CAS  PubMed  Google Scholar 

  22. Bourrie, M.; Meunier, V.; Berger, Y.; Fabre, G. Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes. J. Pharmacol. Exp. Ther. (1996), 277(1), 321–32.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, Z., Rafferty, B., Caldwell, G.W. et al. Rapidly distinguishing reversible and irreversible CYP450 inhibitors by using fluorometric kinetic analyses. Eur. J. Drug Metab. Pharmacokinet. 27, 281–287 (2002). https://doi.org/10.1007/BF03192339

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03192339

Keywords

Navigation