Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Duality results involving functions associated to nonempty subsets of locally convex spaces

Resultados sobre dualidad mediante funciones asociadas a subconjuntos no vacios de espacios localmente convexos

  • 30 Accesses

  • 2 Citations


In many papers on consumer theory and production analysis duality results between profit, revenue, cost, input, output and shortage functions are established. This functions are associated to certain subsets of ℝn. The aim of this paper is to study in a systematic way such duality results in locally convex spaces and to derive them under minimal hypotheses.


En muchos artículos sobre teoría del consumo y análisis de la producción, se establecen resultados de dualidad entre beneficios y costes, e inversiones y rendimientos, proponiéndose diversas funciones de insuficiencia asociadas a ciertos subconjuntos de ℝn. El objeto de este trabajo es el estudio sistemático de dichos resultados de dualidad en espacios localmente convexos, y su obtención bajo condiciones mínimas.

This is a preview of subscription content, log in to check access.


  1. [1]

    Agrell, P. J., Bogetoft, P., Brock, M. andTind, J., (2005). Efficiency evaluation with convex pairs,Adv. Model. Optim.,7, 211–237.

  2. [2]

    Artzner, P., Delbaen, F., Eber, J.-M. andHeath, D., (1999). Coherent measures of risk,Math. Finance,9, 203–228.

  3. [3]

    Briec, W. andCavaignac, L., (2009). An extension of the multi-output state-contingent production model,Econom. Theory,39, 43–64.

  4. [4]

    Chambers, R. G., Chung, Y. andFÄre, R., (1998). Profit, directional distance functions, and Nerlovian efficiency,J. Optim. Theory Appl.,98, 351–364.

  5. [5]

    Cherchye, L., Kuosmanen, T. and Post, T., (2000). Why convexify? An assessment of convexity axioms in DEA, working paper, Helsinki School of Economics.

  6. [6]

    FÄre, R. andGrosskopf, S., (2000). On separability of the profit function,J. Optim. Theory Appl., 105, 609–620.

  7. [7]

    FÄre, R. andPrimont, D., (2006). Directional duality theory,Econom. Theory,29, 239–247.

  8. [8]

    Gerstewitz (Tammer), Chr. andIwanow, E., (1985). Dualität für nichtkonvexe Vektoroptimierungsprobleme,Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau,31, 2, 61–81.

  9. [9]

    Gö Pfert, A., Tammer, C., Riahi, H. andZĂlinescu, C., (2003).Variational methods in partially ordered spaces, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 17, Springer, New York.

  10. [10]

    Hamel, A. H., (2007). Translative sets and functions and its applications to risk measure theory and nonlinear separation, Preprint, University Halle-Wittenberg.

  11. [11]

    Luenberger, D. G., (1992). New optimality principles for economic efficiency and equilibrium,J. Optim. Theory Appl.,75, 221–264.

  12. [12]

    Penot, J.-P. andZĂlinescu, C., (2000). Harmonic sum and duality,J. Convex Anal.,7, 95–114.

  13. [13]

    Tammer, C. And ZĂ Linescu, C., Lipschitz properties of the scalarization function and applications,Optimization, DOI: 10.1080/02331930801951033.

  14. [14]

    ZĂlinescu, C., (2002).Convex Analysis in General Vector Spaces, World Scientific, Singapore.

Download references

Author information

Correspondence to C. ZĂlinescu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

ZĂlinescu, C. Duality results involving functions associated to nonempty subsets of locally convex spaces. Rev. R. Acad. Cien. Serie A. Mat. 103, 219–234 (2009). https://doi.org/10.1007/BF03191905

Download citation


  • Duality results
  • localy convex spaces
  • shortage functions
  • profit
  • revenue
  • input
  • output

Mathematics Subject Classifications

  • 49N15
  • 90C46
  • 91B38