Collectanea mathematica

, Volume 60, Issue 2, pp 213–238

Weighted inequalities for multilinear fractional integral operators



A weighted theory for multilinear fractional integral operators and maximal functions is presented. Sufficient conditions for the two weight inequalities of these operators are found, including “power and logarithmic bumps” and anA condition. For one weight inequalities a necessary and sufficient condition is then obtained as a consequence of the two weight inequalities. As an application, Poincaré and Sobolev inequalities adapted to the multilinear setting are presented.


Fractional integrals maximal operators weighted norm inequalities multilinear operators 


26D10 42B25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Bennet and R. Sharply,Interpolation of Operators, Academic Press, New York, 1988.Google Scholar
  2. 2.
    X. Chen and Q. Xue, Weighted estimates for a class of multilinear fractional type operators, (preprint 2008).Google Scholar
  3. 3.
    D. CruzUribe, J.M. Martell, and C. Pérez, Extrapolation fromA weights and applications,J. Funct. Anal. 213 (2004), 412–439.CrossRefMathSciNetGoogle Scholar
  4. 4.
    D. CruzUribe, J.M. Martell, and C. Pérez, Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture,Adv. Math. 216 (2007), 647–676.CrossRefMathSciNetGoogle Scholar
  5. 5.
    A. De la Torre, personal communication, 2008.Google Scholar
  6. 6.
    J. Garcia-Cuerva, J.L. Rubio de Francia,Weighted Norm Inequalities and Related Topics, NorthHolland Mathematics Studies 116, NorthHolland Publishing Co., Amsterdam, 1985.MATHGoogle Scholar
  7. 7.
    L. Grafakos, On multilinear fractional integrals,Studia Math. 102 (1992), 49–56.MATHMathSciNetGoogle Scholar
  8. 8.
    L. Grafakos,Classical and Modern Fourier Analysis, Prentice Hall, 2004.Google Scholar
  9. 9.
    L. Grafakos and N. Kalton, Some remarks on multilinear maps and interpolation,Math. Ann. 319 (2001), 151–180.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    L. Grafakos and R.H. Torres,Multilinear Calderón-Zygmund theory, Adv. Math. 165 (2002), 124–164.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    L. Grafakos and R.H. Torres, Maximal operator and weighted norm inequalities for multilinear singular integrals,Indiana Univ. Math. J. 51 (2002), 1261–1276.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    C.E. Kenig and E.M. Stein, Multilinear estimates and fractional integration,Math. Res Lett. 6 (1999), 1–15.MATHMathSciNetGoogle Scholar
  13. 13.
    R.Kerman and E. Sawyer, The trace inequality and eigenvalue estimates for Schrödinger operators,Ann. Inst. Fourier (Grenoble) 36 (1986), 207–228.MATHMathSciNetGoogle Scholar
  14. 14.
    A. Lerner, S. Ombrosi, C. Pérez, R.H. Torres, and R. Trujillo González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory,Adv. Math., to appear.Google Scholar
  15. 15.
    B. Muckenhoupt,Weighted norm inequalities for the Hardy maximal function,Trans. Amer. Math. Soc. 165 (1972), 207–226.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for fractional integrals,Trans. Amer. Math. Soc. 192 (1974), 261–274.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    C. Neugebauer, InsertingA p-weights,Proc. Amer. Math. Soc. 87 (1983), 644–648.MATHMathSciNetGoogle Scholar
  18. 18.
    C. Pérez, Two weight norm inequalities for Riesz potentials and uniformL p-weighted Sobolev inequalities,Indiana Univ. Math. J. 39, (1990), 31–44.MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    C. Pérez, Two weight inequalities for potential and fractional type maximal operators,Indiana Univ. Math. J. 43, (1994), 663–683.MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    C. Pérez and R.H. Torres, Sharp maximal function estimates for commutators of singular integrals,Harmonic analysys at Mount Holyoke (South Hadley, MA, 2001), 323–331, Contemp. Math.320, Amer. Math. Soc., Providence, RI, 2003.Google Scholar
  21. 21.
    E.T. Sawyer, A characterization of a two-weight norm inequality for maximal operators,Studia Math. 75 (1982), 1–11.MATHMathSciNetGoogle Scholar
  22. 22.
    E.T. Sawyer, A characterization of a two-weight norm inequality for fractional and poisson integrals,Trans. Amer. Math. Soc. 308, (1988), 533–545.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    E.T. Sawyer and R.L. Wheeden, Weighted inequlities for fractional integrals on Euclidean and homogeneous spaces,Amer. J. Math. 114 (1992), 813–874.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    E.M. Stein,Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series30, Princeton University Press, Princeton, NJ., 1970.MATHGoogle Scholar

Copyright information

© Universitat de Barcelona 2009

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of KansasLawrenceUSA

Personalised recommendations