Transepithelial transport of bepridil in the human intestinal cell line, Caco-2, using a “dynamic model”

  • F. Mathieu
  • M. -J. Galmier
  • A. Nicolay
  • J. -F. Pognat
  • C. Lartigue


The purpose of the study was to go further into the transepithetial transport of bepridil, an anticalcic agent, through monolayer cells Caco-2, using a “dynamic model” including a transfer of inserts with Caco-2 cells into new wells, free of drug, at regular intervals, in order to simulate the blood flux. The state of cells was evaluated by measuring the transepithelial electrical resistance and the transport of bepridil was followed using a gas chromatography/mass spectrometry determination. This study exhibits the importance of the basolateral renewal both on the trasport of bepridil and the maintenance of cells in a satisfactory state. Two elimination phases from the cell compartment seem to occur, with basolateral half lives respectively of 12.2 and 25.6 hours, probably linked with two kinds of cellular binding sites. This dynamic model permits the reflection and simulation of the slowness of the in vivo absorption of bepridil in the small intestine.


Caco-2 bepridil transport dynamic model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boulenc X. (1997): Intestinal cell models. Their use in evaluating the metabolism and absorption of xenobiotics. STP. Pharm. Sci., 7(4), 259–269.Google Scholar
  2. 2.
    Stammati A, Badino P, De Angelis I et al. (1997):in vitro toxicity and formation of early conjugates in Caco-2 cell line treated with clenbuterol, salbutamol and isoxsuprine. Eur. J. Drug Metab. Pharmacokinet., 22(2), 173–178.CrossRefPubMedGoogle Scholar
  3. 3.
    Buur A, Trier L., Magnusson C, Artursson P. (1996): Permeability of 5-fluorouracil and prodrugs in Caco-2 cell monolayers. Int. J. Pharm., 129, 223–231.CrossRefGoogle Scholar
  4. 4.
    Chong S, Dando SA, Soucek KM, Morison RA (1996):in vitro permeability through Caco-2 cells is not quantitatively predictive ofin vivo absorption for peptide-like drugs absorbed via the dipeptide transporter system. Pharm. Res., 13(1), 120–123.CrossRefPubMedGoogle Scholar
  5. 5.
    Cogburn J N, Donovan MG, Schasteen CS (1991): A model of human small intestinal absorptive cells. 1. Transport barrier. Pharm. Res., 8(2), 210–216.CrossRefPubMedGoogle Scholar
  6. 6.
    Collett A, Sims E, Walker D, et al. (1996): Comparison of HT29-18-C1 and Caco-2 cell lines as models for studying intestinal paracellular drug absorption. Pharm. Res., 13(2), 216–221.CrossRefPubMedGoogle Scholar
  7. 7.
    Hilgers AR, Conradi RA, Burton PS. (1990): Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res., 7(9), 902–910.CrossRefPubMedGoogle Scholar
  8. 8.
    Karlsson J, Kuo S-M., Ziemniak J, Artursson P. (1993): Transport of celiprolol across human intestinal epithelial (Caco-2) cells: mediation of secretion by multiple transporters including P-glycoprotein. Br. J. Pharmacol., 110, 1009–1016.PubMedGoogle Scholar
  9. 9.
    Lindmark T, Nikkilä T, Artursson P. (1995): Mechanisms of absorption enhancement by medium chain fatty acids in intestinal epithelial Caco-2 cell monolayers. J. Pharmacol. Exp. Th., 275(2), 958–964.Google Scholar
  10. 10.
    Raub TJ, Barsuhn CL, Williams LR, Decker DE, Sawada GA, Ho NFH. (1993): Use of a biophysical-kinetic model to inderstand the roles of protein binding and membrane partitioning on passive diffusion of highly lipophilic molecules across cellular barriers. J. Drug Target., 1, 269–286CrossRefPubMedGoogle Scholar
  11. 11.
    Krishna G, Chen K, Lin C-C, Nomeir A-A. (2001): Permeability of lipophilic compounds in drug discovery using in-vitro human absorption model, Caco-2. Int. J. Pharm., 222, 77–89.CrossRefPubMedGoogle Scholar
  12. 12.
    Sawada GA, Ho NFH, Williams LR, Barsuhn CL, Raub TJ. (1994): Transcellular Permeability of Chlorpromazine Demonstrating the Roles of Protein Binding and Membrane Partitioning. Pharm. Res., 11(5), 665–673.CrossRefPubMedGoogle Scholar
  13. 13.
    Tillement JP, Albengres E, Lhost F. (1982): Bepridil. Rev. Med., 23, 1637–1640.Google Scholar
  14. 14.
    Mathieu F, Galmier M-J, Pognat J-F, Petit J, Lartigue C. (1999): Transepithelial transport of bepridil in the human cell line, Caco-2, using two media DMEMc and HBSS. Int. J. Pharm., 181, 203–217.CrossRefPubMedGoogle Scholar
  15. 15.
    Sakai M, Noach A-B, Blom-Roosemalen M-C-M, De Boer A-G, Breimer D-D. (1994): Absorption enhancement of hydrophilic compounds by verapamil in Caco-2 cell monolayers. Biochem. Pharmacol., 48(6), 1199–1210.CrossRefPubMedGoogle Scholar
  16. 16.
    Stenson W-F, Easom R-A, Riehl T-E, Turk J. (1993): Regulation of paracellular permeability in Caco-2 cell monolayers by protein kinase C. Am. J. Physiol., 265, G955-G962PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • F. Mathieu
    • 1
  • M. -J. Galmier
    • 1
  • A. Nicolay
    • 1
  • J. -F. Pognat
    • 1
  • C. Lartigue
    • 1
  1. 1.U.M.R. INSERM 484, Laboratoire de Chimie Analytique et Spectrométrie de MasseFaculté de PharmacieClermont-Ferrand CedexFrance

Personalised recommendations