Advertisement

Pharmacokinetic and metabolic studies of busulfan in rat plasma and brain

  • M. Hassan
  • H. Ehrsson
  • I. Wallin
  • S. Eksborg
Original Papers

Summary

Busulfan kinetics were studied in the rat plasma and brain after an I.P. dose of14C-busulfan or busulfan (15 mg/kg). The distribution of busulfan to the brain was rapid and the ratio brain / plasma concentration was 0.74 during the time-course of busulfan.

The elimination half-lives in plasma and brain were 3h for intact busulfan and 8h for the14C-radioactivity. The radioactivity remaining in plasma and brain after 24h was mostly busulfan metabolites e.g. sulfolane, 3-hydroxysulfolane and tetrahydrothiophene-1-oxide as identified by gas chromatography-mass spectrometry. The protein binding to rat plasma was low (9.2 +- 4.4%).

Key words

Busulfan brain and plasma pharmacokinetics metabolites in rat brain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Santos G.W., Tutschka P.J., Brookmeyer R., Saral R., Beschomer W.E., Bias W.B., et al. (1983): Marrow transplantation for acute nonlymphocytic leukemia after treatment with busulfan and cyclophosphamide. N. Engl. J. Med., 309, 1347–1353.CrossRefPubMedGoogle Scholar
  2. 2.
    Tutschka P.J., Copelan E.A., Klein J.P. (1987): Bone marrow transplantation for leukemia following a new busulfan and cyclophosphamide regimen. Blood, 70, 1382–1388.PubMedGoogle Scholar
  3. 3.
    Parkman R., Rappeport J.M., Hellman S., Lipton J., Smith B., Geha R., Nathan D.G. (1984): Busulfan and total body irradiation as antihematopoietic stem cell agents in the preparation of patients with congenital bone marrow disorders for allogeneic bone marrow transplantation. Blood, 64, 852–857.PubMedGoogle Scholar
  4. 4.
    Stephani U., Rating D., Korinthenberg R., Siemes H., Riehm H., Hanefeld F. (1983): Radiation-related disturbance of blood/brain barrier during therapy of acute lymphoblastic leukemia. Lancet, II, 1036–1037.CrossRefGoogle Scholar
  5. 5.
    Deeg H.J., Sullivan K.M., Buckner C.D., Starb R., Appelbaum F.R., Clift R.A., Doney K., Sanders J.E., Witherspoon R.P., Thomas E.D. (1986): Marrow transplantation for acute nonlymphoblastic leukemia in first remission: toxicity and long-term follow-up of patients conditioned with single dose or fractionated total body irradiation. Bone Marrow Transplant., 1, 151–157.PubMedGoogle Scholar
  6. 6.
    Hobbs J.R., Hugh-Jones K., Shaw P.J., Downie C.J.C., Williamson S. (1986): Engraftment rates related to busulphan and cyclophosphamide dosage for displacement bone marrow transplants in fifty children. Bone Marrow Transplant., 1, 201–208.PubMedGoogle Scholar
  7. 7.
    Peng C-T. (1957): Distribution and metabolic fate of S35-labeledmyleran (busulfan) in normal and tumor-bearing rats. J. Pharmacol., 120, 229–238.Google Scholar
  8. 8.
    Trams E.G., Nadkami M.V., deQuattro V., Maengwyn-Davies G.D., Smith P.K. (1959): Dimethanesulphonoxybutane (myleran) preliminary studies on distribution arid metabolic fate in the rat. Biochem. Pharmacol., 2, 7–16.CrossRefGoogle Scholar
  9. 9.
    Hassan M., Ehrsson H. (1986): Degradation of busulfan in aqueous solution. J. Pharm. Biomed. Anal., 4, 95–101.CrossRefPubMedGoogle Scholar
  10. 10.
    Hassan M., Ehrsson H. (1987): Urinary metabolites of busulfanin the rat. Drug Metab. Dispos., 15, 399–402.PubMedGoogle Scholar
  11. 11.
    Hassan M., Ehrsson H. (1983): Gas chromatographic detennination of busulfan in plasma with electron-capture detection. J. Chromatogr., 277, 374–380.CrossRefPubMedGoogle Scholar
  12. 12.
    Ehrnebo M., Agurell S., Boreus L.O., Gordon E., Lonroth U. (1974): Pentazocine binding to blood cells and plasma proteins. Clin. Pharmacol. Ther., 16, 424–429.PubMedGoogle Scholar
  13. 13.
    Gjedde A. (1986): The selective barrier between blood and brain. Trends Biochem. Sci., 11, 525–527.CrossRefGoogle Scholar
  14. 14.
    Hansh C., Björkroth J.P., Leo A. (1987): Hydrophobicity and central nervous system agents: On the principle of minimal hydrophobicity in drug design. J. Pharm. Sci., 76, 663–687.CrossRefGoogle Scholar
  15. 15.
    Ehrsson H., Lönroth U. (1982): Degradation of melphalan in aqueous solution-influence of human albumin binding. J. Pharm. Sci., 71, 826–827.CrossRefPubMedGoogle Scholar
  16. 16.
    Ehrsson B., Lönroth U., Wallin I., Ehmebo M., Nilsson S.O. (1981): Degradation of chlorambucil in aqueous solution — influence of human albumin binding. J. Pharm. Pharmaeol., 33, 313–315.Google Scholar
  17. 17.
    Greig N.H., Sweeney D.J., Rapoport S.I. (1988): Comparative brain and plasma pharmacokinetics and anticancer activities of chlorambucil and melphalan in the rat. Cancer Chemother. Pharmacol., 21, 1–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Shapiro W.R., Young D.F., Mehta B.M. (1975): Methotrexate: Distribution in cerebrospinal fluid after intravenous, ventricular and lumbar injections. N. Engl. J. Med., 293, 161–166.CrossRefPubMedGoogle Scholar
  19. 19.
    Oldendorf W.H. (1983): Aspects of blood-brain barrier in clinical brain imaging. Acta Neuropathol. (Berl.) Suppl., VIII, 111–117.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. Hassan
    • 1
  • H. Ehrsson
    • 1
  • I. Wallin
    • 1
  • S. Eksborg
    • 1
  1. 1.Karolinska PharmacyStockholmSweden

Personalised recommendations