Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Drug targeting with nanoparticles


Nanoparticles are colloidal polymeric particles (size <1000nm) to which drugs are bound by sorption, incorporation, or chemical binding. After intravenous injection they normally distribute into the organs of the reticuloendothelial system (liver, spleen, lungs, bone marrow). However, their body distribution can be altered by coating with surfactants or with physiological components such as serum complement factors. The influence of these coatings on the body distribution and possible mechanisms for the alteration of this distribution are discussed. Differently coated nanoparticles can be used for the targeting of bound drugs to tumors, to the brain, and to inflamed areas in the body.

This is a preview of subscription content, log in to check access.


  1. 1.

    Kreuter, J. (1992) Nanoparticles #x2014; preparation and applications, in Donbrow, M. (ed.) Microcapsules and Nanoparticles in Medicine and Pharmacy, CRS Press, Boca Raton, pp. 125–148.

  2. 2.

    Kreuter, J. (ed.) (1994) Colloidal Drug Delivery Systems, M. Dekker, New York.

  3. 3.

    Couvreur, P., Kante, B., Roland, M., Guiot, P., Bauduin, P., and Speiser, P. (1979) Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J. Pharm. Pharmacol.31, 331–332.

  4. 4.

    Al Khouri Fallough, N., Roblot-Treupel, L., Fessi, H., Devissaguet, J.Ph., and Pusieux, F. (1986) Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules, Int. J. Pharm.28, 125–132.

  5. 5.

    Kreuter, J. (1983) Evaluation of nanoparticles as drug delivery systems II: Comparison of the body distribution of nanoparticles with the body distribution of microspheres (diameter >1 μm), liposomes, and emulsions. Pharm. Acta Helv.58, 242–250.

  6. 6.

    Borchard, G., and Kreuter, J. (1993) Interaction of serum components with poly(methyl methacrylate) nanoparticles and the resulting body distribution after intravenous injection in rats, J. Drug Target1, 21–27.

  7. 7.

    Illum, L., and Davis, S.S. (1984) The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (poloxamer 338), FEBS Letters167, 79–82.

  8. 8.

    Illum, L., Davis, S.S., Müller, R.H., Mak, E., and West, P. (1987) The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a blockpolymer #x2014; poloxamine 908, Life Sci.40, 367–374.

  9. 9.

    Tröster, S.D., Müller, U., and Kreuter, J. (1990) Modification of the body distribution of poly(methyl methacrylate) nanoparticles in rats by coating with surfactants, Int. J. Pharm61, 85–100.

  10. 10.

    Tröster, S.D., and Kreuter, J. (1992) Influence of the surface properties of low contact angle surfactants on the body distribution of14C-poly(methyl methacrylate) nanoparticles, J. Microencapsul.9, 19–28.

  11. 11.

    Borchard, G., Brandriss, S., Kreuter, J., and Margel, S. (1994) Body distribution of75Se-radiolabeled silica nanoaparticles covalently coated with ω-functionalized surfactants after intravenous injection in rats. J. Drug Target.2, 61–77.

  12. 12.

    Blunk, T., Hochstrasser, D., Sanchez, J.-C., Müller, R.H. (1993) Colloidal carriers for intravenous drug targeting #x2014; plasma absorption patterns on surface-modified latex particles evaluated by 2-D-polyacryamide gel electrophoresis, Electrophoresis14, 1382–1387.

  13. 13.

    Borchard, G., Audus, K.L., Shi, F., and Kreuter, J. (1994) Uptake of surfactant-coated poly(methyl methacrylate) #x2014; nanoparticles by bovine brain microvessel endothelial cell monolayers, Int. J. Pharm.110, 29–35.

  14. 14.

    Alyautdin, R., Gothier, D., Petrov, V., Kharkevich, D., and Kreuter, J. (in press) Analgesic activity of the hexaptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles, Eur. J. Pharm. Biopharm.

  15. 15.

    Grislain, L., Couvreur, P., Lenaerts, V., Roland, M., Deprez-Decampeneere, D., and Speiser, P. (1983) Pharmacokinetics and distribution of a biodegradable drug carrier, Int. J. Pharm.17, 335–345.

  16. 16.

    Gipps, E.M., Arshady, R., Kreuter, J., Groscurth, P., and Speiser, P.P. (1986) Distribution of polyhexyl cyanoacrylate nanoparticles in nude mice bearing human osteosarcoma, J. Pharm. Sci.75, 256–258.

  17. 17.

    Brasseur, F., Couvreur, P., Kante, B., Deckers-Passau, L., Roland, M., Deckers, C., and Speiser, P. (1980) Actinomycin D adsorbed on polymethylcyanoacrylate nanoparticles: Increased efficiency against an experimental tumor, Eur. J. Cancer16, 1441–1445.

  18. 18.

    Kattan, J., Droz, J.-P., Couvreur, P., Marino, J.-P., Boutan-Laroze, A., Rougier, P., Brault, P., Vranckx, H., Grognet, J.-M., Morge, X., and Sancho-Garnier, H. (1992) Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles, Invest. New Drugs10, 191–199.

  19. 19.

    Kreuter, J., and Hartmann, H.R. (1983) Comparative study on the cytostatic effects and the tissue distribution of 5-fluorouracil in a free form and bound to polybutylcyanoacrylate nanoparticles in sarcoma 180-bearing mice, Oncology40, 363–366.

  20. 20.

    Beck, P., Kreuter, J., Reszka, R., and Fichtner, I. (1993) Influence of polybutylcyanoacrylate nanoparticles and liposomes on the efficacy and toxicity of the anticancer drug mitoxantrone in murine tumor models, J. Microencapsul.10, 101–114.

  21. 21.

    Couvreur, P., Kante, B., Grislain, L., Roland, M., and Speiser, P. (1982) Toxicity of polyalkylcyanoacrylate nanoparticles II: Doxorubicin-loaded nanoparticles, J. Pharm. Sci.71, 790–792.

  22. 22.

    Couvreur, P., Grislain, L., Lenaerts, V., Brasseur, F., Guiot, P., and Biernacki, A. (1986) Biodegradable polymeric nanoparticles as drug carrier for antitumor agents, in Guiot, P. and Couvreur, P. (eds.) Polymeric Nanoparticles and Microspheres, CRC Press, Boca Raton, pp. 27–93.

  23. 23.

    Schäfer, V., v. Briesen, H., Andreesen, R., Steffan, A.-M., Royer, C., Tröster, S., Kreuter, J., and Rübsamen-Waigmann, H. (1992) Phagocytosis of nanoparticles by human immunodeficiency virus (HIV)-infected macrophages: A possibility for antiviral drug targeting, Pharm. Res.9, 541–546.

  24. 24.

    Diepold, R., Kreuter, J., Guggenbuhl, P., and Robinson, J.R. (1989) Distribution of poly-hexyl-2-cyano-[3-14C] acrylate nanoparticles in healthy and chronically inflamed rabbit eyes, Int. J. Pharm.54, 149–153.

  25. 25.

    Illum, L., Wright, J., and Davis, S.S. (1989) Targeting of microspheres to sites of inflammation, Int. J. Pharm.52, 221–224.

  26. 26.

    Alpar, H.O., Field, W.N., Hyde, R., and Lewis, D.A. (1989) The transport of microspheres from the gastrointestinal tract to inflammatory air pouches in the rat, J. Pharm. Pharmacol.41, 194–196.

  27. 27.

    Kreuter, J. (1991) Peroral administration of nanoparticles, Adv. Drug Deliv. Rev.7, 71–86.

  28. 28.

    Diepold, R., Kreuter, J., Himber, J., Gurny, R., Lee, V.H.K., Robinson, J.R., Saettone, M.P., and Schnaudigel, O.E. (1989) Comparison of different models for the testing of pilocarpine eyedrops using conventional eyedrops and a novel depot formulation (nanoparticles), Gre afe's Arch. Clin. Exp. Ophthalmol.227, 188–193.

  29. 29.

    Maincent, P., Thouvenot, P., Amicabile, C., Hoffman, M., Kreuter, J., Couvreur, P., and Devissaguet, J.P. (1992) Lymphatic targetting of polymeric nanoparticles after intraperitoneal administration in rats, Pharm. Res.9, 1534–1539.

  30. 30.

    Beck, P.H., Kreuter, J., Müller, W.E.G., and Schatton, W. (1994) Improved delivery of avarol with polybutylcyanoacrylate #x2014; nanoparticles, Eur. J. Pharm. Biopharm.40, 134–137.

Download references

Author information

Correspondence to Jörg Kreuter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kreuter, J. Drug targeting with nanoparticles. Eur. J. Drug Metab. Pharmacokinet. 19, 253–256 (1994). https://doi.org/10.1007/BF03188928

Download citation


  • Napoparticles
  • drug targeting
  • body distribution
  • reticuloendothelial system
  • brain delivery