Drug targeting with nanoparticles

  • Jörg Kreuter


Nanoparticles are colloidal polymeric particles (size <1000nm) to which drugs are bound by sorption, incorporation, or chemical binding. After intravenous injection they normally distribute into the organs of the reticuloendothelial system (liver, spleen, lungs, bone marrow). However, their body distribution can be altered by coating with surfactants or with physiological components such as serum complement factors. The influence of these coatings on the body distribution and possible mechanisms for the alteration of this distribution are discussed. Differently coated nanoparticles can be used for the targeting of bound drugs to tumors, to the brain, and to inflamed areas in the body.


Napoparticles drug targeting body distribution reticuloendothelial system brain delivery 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kreuter, J. (1992) Nanoparticles #x2014; preparation and applications, in Donbrow, M. (ed.) Microcapsules and Nanoparticles in Medicine and Pharmacy, CRS Press, Boca Raton, pp. 125–148.Google Scholar
  2. 2.
    Kreuter, J. (ed.) (1994) Colloidal Drug Delivery Systems, M. Dekker, New York.Google Scholar
  3. 3.
    Couvreur, P., Kante, B., Roland, M., Guiot, P., Bauduin, P., and Speiser, P. (1979) Polycyanoacrylate nanocapsules as potential lysosomotropic carriers: preparation, morphological and sorptive properties. J. Pharm. Pharmacol.31, 331–332.PubMedGoogle Scholar
  4. 4.
    Al Khouri Fallough, N., Roblot-Treupel, L., Fessi, H., Devissaguet, J.Ph., and Pusieux, F. (1986) Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules, Int. J. Pharm.28, 125–132.CrossRefGoogle Scholar
  5. 5.
    Kreuter, J. (1983) Evaluation of nanoparticles as drug delivery systems II: Comparison of the body distribution of nanoparticles with the body distribution of microspheres (diameter >1 μm), liposomes, and emulsions. Pharm. Acta Helv.58, 242–250.PubMedGoogle Scholar
  6. 6.
    Borchard, G., and Kreuter, J. (1993) Interaction of serum components with poly(methyl methacrylate) nanoparticles and the resulting body distribution after intravenous injection in rats, J. Drug Target1, 21–27.CrossRefGoogle Scholar
  7. 7.
    Illum, L., and Davis, S.S. (1984) The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (poloxamer 338), FEBS Letters167, 79–82.CrossRefPubMedGoogle Scholar
  8. 8.
    Illum, L., Davis, S.S., Müller, R.H., Mak, E., and West, P. (1987) The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilized with a blockpolymer #x2014; poloxamine 908, Life Sci.40, 367–374.CrossRefPubMedGoogle Scholar
  9. 9.
    Tröster, S.D., Müller, U., and Kreuter, J. (1990) Modification of the body distribution of poly(methyl methacrylate) nanoparticles in rats by coating with surfactants, Int. J. Pharm61, 85–100.CrossRefGoogle Scholar
  10. 10.
    Tröster, S.D., and Kreuter, J. (1992) Influence of the surface properties of low contact angle surfactants on the body distribution of14C-poly(methyl methacrylate) nanoparticles, J. Microencapsul.9, 19–28.CrossRefPubMedGoogle Scholar
  11. 11.
    Borchard, G., Brandriss, S., Kreuter, J., and Margel, S. (1994) Body distribution of75Se-radiolabeled silica nanoaparticles covalently coated with ω-functionalized surfactants after intravenous injection in rats. J. Drug Target.2, 61–77.CrossRefGoogle Scholar
  12. 12.
    Blunk, T., Hochstrasser, D., Sanchez, J.-C., Müller, R.H. (1993) Colloidal carriers for intravenous drug targeting #x2014; plasma absorption patterns on surface-modified latex particles evaluated by 2-D-polyacryamide gel electrophoresis, Electrophoresis14, 1382–1387.CrossRefPubMedGoogle Scholar
  13. 13.
    Borchard, G., Audus, K.L., Shi, F., and Kreuter, J. (1994) Uptake of surfactant-coated poly(methyl methacrylate) #x2014; nanoparticles by bovine brain microvessel endothelial cell monolayers, Int. J. Pharm.110, 29–35.CrossRefGoogle Scholar
  14. 14.
    Alyautdin, R., Gothier, D., Petrov, V., Kharkevich, D., and Kreuter, J. (in press) Analgesic activity of the hexaptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles, Eur. J. Pharm. Biopharm.Google Scholar
  15. 15.
    Grislain, L., Couvreur, P., Lenaerts, V., Roland, M., Deprez-Decampeneere, D., and Speiser, P. (1983) Pharmacokinetics and distribution of a biodegradable drug carrier, Int. J. Pharm.17, 335–345.CrossRefGoogle Scholar
  16. 16.
    Gipps, E.M., Arshady, R., Kreuter, J., Groscurth, P., and Speiser, P.P. (1986) Distribution of polyhexyl cyanoacrylate nanoparticles in nude mice bearing human osteosarcoma, J. Pharm. Sci.75, 256–258.CrossRefPubMedGoogle Scholar
  17. 17.
    Brasseur, F., Couvreur, P., Kante, B., Deckers-Passau, L., Roland, M., Deckers, C., and Speiser, P. (1980) Actinomycin D adsorbed on polymethylcyanoacrylate nanoparticles: Increased efficiency against an experimental tumor, Eur. J. Cancer16, 1441–1445.PubMedGoogle Scholar
  18. 18.
    Kattan, J., Droz, J.-P., Couvreur, P., Marino, J.-P., Boutan-Laroze, A., Rougier, P., Brault, P., Vranckx, H., Grognet, J.-M., Morge, X., and Sancho-Garnier, H. (1992) Phase I clinical trial and pharmacokinetic evaluation of doxorubicin carried by polyisohexylcyanoacrylate nanoparticles, Invest. New Drugs10, 191–199.CrossRefPubMedGoogle Scholar
  19. 19.
    Kreuter, J., and Hartmann, H.R. (1983) Comparative study on the cytostatic effects and the tissue distribution of 5-fluorouracil in a free form and bound to polybutylcyanoacrylate nanoparticles in sarcoma 180-bearing mice, Oncology40, 363–366.CrossRefPubMedGoogle Scholar
  20. 20.
    Beck, P., Kreuter, J., Reszka, R., and Fichtner, I. (1993) Influence of polybutylcyanoacrylate nanoparticles and liposomes on the efficacy and toxicity of the anticancer drug mitoxantrone in murine tumor models, J. Microencapsul.10, 101–114.CrossRefPubMedGoogle Scholar
  21. 21.
    Couvreur, P., Kante, B., Grislain, L., Roland, M., and Speiser, P. (1982) Toxicity of polyalkylcyanoacrylate nanoparticles II: Doxorubicin-loaded nanoparticles, J. Pharm. Sci.71, 790–792.CrossRefPubMedGoogle Scholar
  22. 22.
    Couvreur, P., Grislain, L., Lenaerts, V., Brasseur, F., Guiot, P., and Biernacki, A. (1986) Biodegradable polymeric nanoparticles as drug carrier for antitumor agents, in Guiot, P. and Couvreur, P. (eds.) Polymeric Nanoparticles and Microspheres, CRC Press, Boca Raton, pp. 27–93.Google Scholar
  23. 23.
    Schäfer, V., v. Briesen, H., Andreesen, R., Steffan, A.-M., Royer, C., Tröster, S., Kreuter, J., and Rübsamen-Waigmann, H. (1992) Phagocytosis of nanoparticles by human immunodeficiency virus (HIV)-infected macrophages: A possibility for antiviral drug targeting, Pharm. Res.9, 541–546.CrossRefPubMedGoogle Scholar
  24. 24.
    Diepold, R., Kreuter, J., Guggenbuhl, P., and Robinson, J.R. (1989) Distribution of poly-hexyl-2-cyano-[3-14C] acrylate nanoparticles in healthy and chronically inflamed rabbit eyes, Int. J. Pharm.54, 149–153.CrossRefGoogle Scholar
  25. 25.
    Illum, L., Wright, J., and Davis, S.S. (1989) Targeting of microspheres to sites of inflammation, Int. J. Pharm.52, 221–224.CrossRefGoogle Scholar
  26. 26.
    Alpar, H.O., Field, W.N., Hyde, R., and Lewis, D.A. (1989) The transport of microspheres from the gastrointestinal tract to inflammatory air pouches in the rat, J. Pharm. Pharmacol.41, 194–196.PubMedGoogle Scholar
  27. 27.
    Kreuter, J. (1991) Peroral administration of nanoparticles, Adv. Drug Deliv. Rev.7, 71–86.CrossRefGoogle Scholar
  28. 28.
    Diepold, R., Kreuter, J., Himber, J., Gurny, R., Lee, V.H.K., Robinson, J.R., Saettone, M.P., and Schnaudigel, O.E. (1989) Comparison of different models for the testing of pilocarpine eyedrops using conventional eyedrops and a novel depot formulation (nanoparticles), Gre afe's Arch. Clin. Exp. Ophthalmol.227, 188–193.CrossRefGoogle Scholar
  29. 29.
    Maincent, P., Thouvenot, P., Amicabile, C., Hoffman, M., Kreuter, J., Couvreur, P., and Devissaguet, J.P. (1992) Lymphatic targetting of polymeric nanoparticles after intraperitoneal administration in rats, Pharm. Res.9, 1534–1539.CrossRefPubMedGoogle Scholar
  30. 30.
    Beck, P.H., Kreuter, J., Müller, W.E.G., and Schatton, W. (1994) Improved delivery of avarol with polybutylcyanoacrylate #x2014; nanoparticles, Eur. J. Pharm. Biopharm.40, 134–137.Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Jörg Kreuter
    • 1
  1. 1.Institut Pür Pharmajeutische TechnologieJohann WolFgang Goethe-UniversitätFrankFurt am MainGermany

Personalised recommendations