Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Gradient viscoplastic modelling of material instabilities in metals

  • 50 Accesses

Abstract

A gradient viscoplasticity model has been used to analyse stationary and propagative instabilities. It is demonstrated that the use of viscous regularisation is effective for both quasistatic and dynamic problems. Due to the influence of the length scales that are introduced in the model, the numerical simulation gives mesh-objective results with a finite width and unique orientation of the shear band. The numerical simulation of shear banding and propagative Portevin-Le Chatelier bands will be discussed. A 3D analysis of shear banding is shown to give significantly differentresults than the 2D plane strain analysis under similar conditions. Very fine meshes are needed to obtain accurate solutions for the shear band. The Arbitrary Lagrangian Eulerian remeshing method will be used to relocate elements from outside to inside the shear band to minimise computer costs.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Z. P. Bazant and T. B. Belytschko,ASCE J. Eng. Mech. 111, 381 (1985).

  2. 2.

    A. Needleman,Comp. Meth. Appl. Mech. Eng. 67, 69 (1988).

  3. 3.

    B. Loret and J. H. prevost,Comp. Meth. Appl. Mech. Eng. 83, 247 (1990).

  4. 4.

    L. J. Sluys,Wave Propagation, Localisation and Dispersion in Softening Solids, Doctoral Thesis, Delft University of Technology, The Netherlands (1992).

  5. 5.

    W. M. Wang, L. J. Sluys and R. de Borst,European J. Mec. A/Solid 15, 447 (1996).

  6. 6.

    T. B. Belytschko, X. Wang, Z. P. Bazant and Y. Hyun,J. AppL Mech. 54, 513 (1987).

  7. 7.

    W. M. Wang, L. J. Sluys and R. de Borst,Int. J. Num. Meth. Eng. 40, 3839 (1997).

  8. 8.

    T. J. R. Hughes, W. K. Liu and T. K. Zimmermann,Comp. Meth. AppL Mech. Eng. 29, 329 (1981).

  9. 9.

    A. Huerta and F. Casadei,Eng. Comp. 11, 317 (1994).

  10. 10.

    H. Askes, L. Bode and L. J. Sluys,Mechanics of Cohesive-Frictional Materials, accepted for publication.

  11. 11.

    P. Perzyna,Recent Advances in Applied Mechanics, p. 9, Academic Press, New York (1966).

  12. 12.

    G. Duvaut and J. L. Lions,Dunod, Paris (1972).

  13. 13.

    W. M. Wang,Doctoral Thesis, TU-Delfl, The Netherlands (1997).

  14. 14.

    L. J. Sluys, H.-B. Miihlhaus and R. de Borst,Int. J. Solids Structures 30, 1153 (1992).

  15. 15.

    Z. P. Bazant,ASCE J. Eng. Mech. 102, 331 (1976).

  16. 16.

    L. J. Sluys, M. Cauvern and R. de Borst,Eng. Comput. 12, 209 (1995).

  17. 17.

    T. J. R. Hughes,Int. J. Num. Meth. Eng. 15, 1413 (1980).

Download references

Author information

Correspondence to W. M. Wang or H. Askes or L. J. Sluys.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, W.M., Askes, H. & Sluys, L.J. Gradient viscoplastic modelling of material instabilities in metals. Metals and Materials 4, 537–542 (1998). https://doi.org/10.1007/BF03187824

Download citation

Key words

  • gradient viscoplasticity
  • internal length scale
  • stationary shear band
  • propagative band
  • Arbitrary Lagrangian Eulerian remeshing method