Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Development features and original altitude of a karst planation surface: Preliminary review

  • 27 Accesses

  • 2 Citations

Abstract

Traditional theories of geographical cycle and pediplain cannot describe correctly the development of planation surfaces in karst regions. Authors, therefore, put forward conception of karst planation and karst planation surface, suggesting that karst planation is another type of planation process characterized by chemical erosion and transformation. To identify the distinction between evolution features of normal landforms and those of karst landforms developed in the South China, authors suggest karst planation surfaces under similar environmental conditions may reach a lower altitude and gradient ratio, in contrast with normal landform areas. This may be applied to researching on Tibetan Plateau uplift.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Cui, Z. J., Li, D. W., Wu, Y. Q. et al., Comment on planation surface, Chinese Science bulletin, 1999, 44 (22): 2017.

  2. 2.

    Li, J. J., Tree stages of uplift and planation surfaces of Tibetan Plateau, in Environment · Landform · Development, Beijing: Chinese Environmental Science Press, 1995, 1–5.

  3. 3.

    Li, J. J., Fang, X. M., Ma H. Z. et al., Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic, Science in China, Ser. D, 1996, 39 (4): 380.

  4. 4.

    Li, J. J., Geomorphologic evolution of Tibetan Plateau and Asian monsoon, Marine Geoloby and Quaternary Geology, 1999, 19 (1): 1.

  5. 5.

    Cui, Z. J., Gao, Q. Z., Liu, G. N. et al., Planation surfaces, palaeo-karst and uplift of Xizang (Tibet) Plateau, Science in China, Ser. D, 1996, 39 (4): 391.

  6. 6.

    Cui, Z. J., Gao, Q. Z., Liu, G. N. et al., The initial elevation of palaeokarst and planation surfaces on Tibet Plateau, Chinese Science Bulletin, 1997, 42 (11): 934.

  7. 7.

    Li, D. W., Cui, Z. J., Liu, G. N., Existence of paleao-karst on Tibetan Plateau and its comparison with East adjustment district, Corsologica sinica, 1999, 18 (4): 309.

  8. 8.

    Li, D. W., Cui, Z. J., Liu, G. N., Feature and origin of covered karst on Hunan, Guangxi, Guizhou, Yunnan and Tibet, Journal of Mountain Science, 2000, 18 (4): 289.

  9. 9.

    ТИмоϕеев д. А., ПоепхностИ вьиравНИваНИЯ сущИ, МосКва: НауКа, 1979.

  10. 10.

    Davis, W. M., Basal-level, grade, and peneplain, Jour. Geol., 1898, 10: 77.

  11. 11.

    Penck, W., Die morphologische Analyse, Engelhorn. Stuttgare, 1924, 283.

  12. 12.

    King, L.C., The study of the world’s plainlands: a new approach to geomorphology, Quart. J. Geol. Soc. London, 1950, 106: 101.

  13. 13.

    Baulig, H., Peneplains and pedplains, Bull. Geol. Soc. America, 1957, 68: 913.

  14. 14.

    Budel, Die rilieftypen der flachenspulzone sub-indiens am ostabfall dekans gegen Madras, Colloquium Geographicum, 1965, 25 (33): 93.

  15. 15.

    БорисевиЧ Д, В., Коррерряция воЗрасТОВ поверцНоЧТей вьирморавНИвНаНИЯ МаТерИКов СверНоroГо ЮЖНоПо полУШарИй. Грморфолопия. (1): 17.

  16. 16.

    БорИсевИч Д. В., ПоверхИостИ вьИBравНИваНИя ПлаТϕломеННьИШ частеЙ котИНеНтов: Иш КорреляцИя И условИя ϕормИроваИНя, 1989 ГерморϕологИя, 2000, (1): 1.

  17. 17.

    Gregory, K. M., Chase, C. G., Tectonic and climatic significance of a late Eocene low-relief, high-level geomorphic surface, Colorado, J. Geophysics Research, 1994, 99 (10): 20141.

  18. 18.

    Zhang, Y. J., Significance of collapses in karst caves and landform development, in Karst Landform and Caves (ed. Geomorhological Committee of Geographical Society of China), Beijing: Science Press, 1985, 99.

  19. 19.

    Zhang, Y. J., Transition of undergound landform to surface, in A study of Karst Landform and Caves (ed. Geomorhological Committee of Geographical Society of China), Beijing: Science Press, 1990.

  20. 20.

    Zhang, Y. J., Zhang, D., Type, distribution and evolution of caves in Guizhou, China, Progress of Science in Guizhou, Special Issue, 1984.

  21. 21.

    Bloom, A. L., Geomorphology: A Systematic Analysis of Late Cenozoic Landform, Printice-Hall, Inc., 1998.

  22. 22.

    Powell, J.W., Exploration of the Colorado River of the West (1969–1872), Washington, 1875.

  23. 23.

    Trudgill, S.T., Limestone geomorphology, New York: Longman Inc., 1985.

  24. 24.

    Milliman, J. D., Fluvial sediment dischange to the sea and importance of regional tectonics, in: tectonic uplift and change of climate (ed. Willian F. R.), New York: Plenum Press, 1997, 239.

  25. 25.

    Ceiling, T. E., Late cenozoic vegetation change, atmospheric CO2, and tectonics, in: Tectonic uplift and change of climate (ed. Willian F. R.), New York: Plenum Press, 1997, 313.

  26. 26.

    Yuan, D. X., Karst in China. Beijing: Geological Press, 1994.

  27. 27.

    Ollier, C. D., Ancient landforms, London: Belhave Press, 1991, 74.

  28. 28.

    Qian, X. P., The discovery of karst denudatin surface of the Taihang Stage and the division of physiographicstages, Corsologica Sinica, 1984, (2): 27.

  29. 29.

    Molina, J. M., Ruiz-Ortiz P.A., Vera, J. A., A review of polyphase karstification in extensional tectonic regimes: Jurassic and Cretaceous examples, Betic Cordillera, southern Spain, Sedimentary Geology, 1999, 129: 71.

  30. 30.

    Younger, P. L., Stunell, J. M., Karst and pseudokarst: an artificial distinction? in Geomorphology and Groundwater (ed. Brown, A. G.), Chichester: John Wiley & Sons Ltd., 1995, 121.

Download references

Author information

Correspondence to Dewen Li.

About this article

Cite this article

Li, D., Cui, Z., Zhang, Q. et al. Development features and original altitude of a karst planation surface: Preliminary review. Chin.Sci.Bull. 46, 33–38 (2001). https://doi.org/10.1007/BF03187233

Download citation

Keywords

  • karst
  • planation surface
  • peneplain
  • pediplain
  • Tibet Plateau