Chinese Science Bulletin

, Volume 46, Issue 17, pp 1463–1465 | Cite as

Temporal properties of pattern adaptation of relay cells in the lateral geniculate nucleus of cats

  • Yupeng Yang
  • Jianzhong Jin
  • Yifeng Zhou
  • Tiande Shou
Notes

Abstract

The temporal properties of pattern adaptation of relay cells induced by repeated sinusoidal drifting grating were investigated in the dorsal lateral geniculate nucleus (dLGN) of cats. The results showed that the response amplitude declined and the response latency prolonged when relay cells were pattern-adapted in dLGN, like the similar findings in visual cortex. However, in contrast to the result in cortex, the response phase of relay cells advanced. This implies that an inhibition with relatively long latency may participate in the pattern adaptation of dLGN cells and the adaptation in dLGN may be via a mechanism different from that of visual cortex.

Keywords

pattern adaptation temporal properties latency phase lateral geniculate nucleus cat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maffei, L., Fiorentini, A., Bisti, S., Neural correlate of perceptual adaptation to gratings, Science, 1973, 182(116): 1036.CrossRefGoogle Scholar
  2. 2.
    Adorjan, P., Piepenbrock, C., Obermayer, K., Contrast adaptation and infomax in visual cortical neurons, Rev. Neurosci., 1999, 10(3–4): 181.Google Scholar
  3. 3.
    Carandini, M., Ferster, D., A tonic hyperpolarization underlying contrast adaptation in cat visual cortex, Science, 1997, 276: 949.CrossRefGoogle Scholar
  4. 4.
    Ohzawa, I., Sclar, G., Freeman, R., Contrast gain control in the cat’s visual system, J. Neurophysiol., 1985, 54(3): 651.Google Scholar
  5. 5.
    Vidyasagar, T. R., Pattern adaptation in cat visual cortex is a co-operative phenomenon, Neuroscience, 1990, 36(1): 175.CrossRefGoogle Scholar
  6. 6.
    Saul, A. B., Adaptation aftereffects in single neurons of cat visual cortex: response timing is retarded by adapting, Vis. Neurosci., 1995, 12(2): 191.CrossRefGoogle Scholar
  7. 7.
    Shou, T., Li, X., Zhou, Y. et al., Adaptation of visually evoked responses of relay cells in the dorsal lateral geniculate nucleus of the cat following prolonged exposure to drifting gratings, Vis. Neurosci., 1996, 13(4): 605.CrossRefGoogle Scholar
  8. 8.
    Sanchez-Vives, M. V., Nowark, L. G., McCormick, D. A., Membrane mechanisms underlying contrast adaptation in cat area 17in vivo, J. Neurosci., 2000, 20(11): 4267.Google Scholar
  9. 9.
    Sanchez-Vives, M. V., Nowark, L. G., McCormick, D. A., Cellular mechanisms of long-lasting adaptation in visual cortical neuronsin vitro, J. Neurosci., 2000, 20(11): 4286.Google Scholar
  10. 10.
    Wang, W., Shou, T., Pattern adaptation of relay cells in the lateral geniculate nucleus of binocular and monocular vision-deprived cats, Acta Physiologica Sinica, 2000, 52(3): 230.Google Scholar
  11. 11.
    Georgeson, M. A., Harris, M. G., Spatial selectivity of contrast adaptation: model and data, Vision Res., 1984, 24(7): 729.CrossRefGoogle Scholar
  12. 12.
    Marsh, E., Baker, R., Normal and adapted visuo-oculomotor reflexes in goldfish, J. Neurophysiol., 1997, 77(3): 1099.Google Scholar
  13. 13.
    Jia, F., Zhou, Y.F., the function of short-term synaptic plasticity, Progress in Biochemistry and Biophysics, 2000, 27(2): 174.Google Scholar

Copyright information

© Science in China Press 2001

Authors and Affiliations

  • Yupeng Yang
    • 1
  • Jianzhong Jin
    • 1
  • Yifeng Zhou
    • 1
  • Tiande Shou
    • 2
    • 3
  1. 1.Vision Research Laboratory, School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Vision Research Laboratory and Liren Laboratory, Center for Brain Science Research, School of Life SciencesFudan UniversityShanghaiChina
  3. 3.Laboratory of Visual Information Processing, Institute of BiophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations