Numerical verification method of solutions for elliptic equations and its application to the Rayleigh-Bénard problem



We first summarize the general concept of our verification method of solutions for elliptic equations. Next, as an application of our method, a survey and future works on the numerical verification method of solutions for heat convection problems known as Rayleigh-Bénard problem are described. We will give a method to verify the existence of bifurcating solutions of the two-dimensional problem and the bifurcation point itself. Finally, an extension to the three-dimensional case and future works will be described.

Key words

numerical verification method elliptic equations Rayleigh-Bénard problem bifurcation point 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Bénard, Les tourbillons cellulaires dans une nappe liquide. Revue Gén. Sci. Pure Appl.,11 (1900), 1261–1271, 1309–1328.Google Scholar
  2. [2]
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability. Oxford University Press, 1961.Google Scholar
  3. [3]
    J.H. Curry, Bounded solutions of finite dimensional approximations to the Boussinesq equations. SIAM J. Math. Anal.,10 (1979), 71–79.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    A.V. Getling, Rayleigh-Bénard Convection: Structures and Dynamics. Advanced Series in Nonlinear Dynamics,11, World Scientific, 1998.Google Scholar
  5. [5]
    V.I. Iudovich, On the origin of convection. J. Appl. Math. Mech.,30 (1966), 1193–1199.CrossRefMathSciNetGoogle Scholar
  6. [6]
    D.D. Joseph, On the stability of the Boussinesq equations. Arch. Rational Mech. Anal.,20 (1965), 59–71.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Y. Kagei and W. von Wahl, The Eckhaus criterion for convection roll solutions of the Oberbeck-Boussinesq equations. Int. J. Non-linear Mechanics.,32 (1997), 563–620.MATHCrossRefGoogle Scholar
  8. [8]
    T. Kawanago, A symmetry-breaking bifurcation theorem and some related theorems applicable to maps having unbounded derivatives. Japan J. Indust. Appl. Math,21 (2004), 57–74.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    F. Kikuchi and X. Xuefeng, Determination of the Babuska-Aziz constant for the linear triangular finite element. Japan J. Ind. Appl. Math.,23 (2006), 75–82.MATHCrossRefGoogle Scholar
  10. [10]
    M.-N. Kim, M.T. Nakao, Y. Watanabe and T. Nishida, A numerical verification method of bifurcating solutions for 3-dimensional Rayleigh-Bénard problems. Numer. Math.,111 (2009), 389–406.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    O. Knüppel, PROFIL/BIAS—A fast interval library. Computing,53 (1994), 277–287, Scholar
  12. [12]
    R. Krishnamurti, Some further studies on the transition to turbulent convection. J. Fluid Mech.,60 (1973), 285–303.CrossRefGoogle Scholar
  13. [13]
    K. Nagatou, N. Yamamoto and M.T. Nakao, An approach to the numerical verification of solutions for nonlinear elliptic problems with local uniqueness. Numer. Funct. Anal. Optim.,20 (1999), 543–565.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    K. Nagatou, K. Hashimoto and M.T. Nakao, Numerical verification of stationary solutions for Navier-Stokes problems. J. Comput. Appl. Math.,199 (2007), 424–431.CrossRefMathSciNetGoogle Scholar
  15. [15]
    M.T. Nakao, A numerical approach to the proof of existence of solutions for elliptic problems. Japan J. Appl. Math.,5 (1988), 313–332.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    M.T. Nakao, N. Yamamoto and S. Kimura, On best constant in the optimal error stimates for theH 01-projection into piecewise polynomial spaces. Journal of Approximation. Theory,93, (1998), 491–500.MATHMathSciNetGoogle Scholar
  17. [17]
    M.T. Nakao, Numerical verification methods for solutions of ordinary and partial differential equations. Numer. Funct. Anal. Optim.,22 (2001), 321–356.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    M.T. Nakao, K. Hashimoto and Y. Watanabe, A numerical method to verify the invertibility of linear elliptic operators with applications to nonlinear problems. Computing75 (2005), 1–14.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    M.T. Nakao, Y. Watanabe, N. Yamamoto and T. Nishida, Some computer assisted proofs for solutions of the heat convection problems. Reliable Computing,9 (2003), 359–372.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    M.T. Nakao and Y. Watanabe, An efficient approach to the numerical verification for solutions of elliptic differential equations. Numer. Algor.,37 (2004), 311–323.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    T. Nishida, T. Ikeda and H. Yoshihara, Pattern formation of heat convection problems. Proceedings of the International Symposium on Mathematical Modeling and Numerical Simulation in Continuum Mechanics, T. Miyoshi et al. (eds.), Lecture Notes in Computational Science and Engineering,19, Springer-Verlag, 2002, 155–167.Google Scholar
  22. [22]
    M. Plum, ExplicitH 2-estimates, and pointwise bounds for solutions of second-order elliptic boundary value problems. J. Math. Anal. Appl.,165 (1992), 36–61.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    P.H. Rabinowitz, Existence and nonuniqueness of rectangular solutions of the Bénard problem. Arch. Rational Mech. Anal.,29 (1968), 32–57.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    J.W.S. Rayleigh, On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Phil. Mag.,32 (1916), 529–546; Sci. Papers,6, 432–446.Google Scholar
  25. [25]
    S.M. Rump, On the solution of interval linear systems. Computing,47 (1992), 337–353.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    S.M. Rump, A note on epsilon-inflation. Reliable Computing,4 (1998), 371–375.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Y. Watanabe, N. Yamamoto, M.T. Nakao and T. Nishida, A numerical verification of nontrivial solutions for the heat convection problem. J. Math. Fluid Mech.,6 (2004), 1–20.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    Y. Watanabe, A computer-assisted proof for the Kolmogorov flows of incompressible viscous fluid. J. Comput. Appl. Math.,223 (2009), 953–966.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    N. Yamamoto, A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed point theorem. SIAM J. Numer. Anal.,35 (1998), 2004–2013.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© JJIAM Publishing Committee 2009

Authors and Affiliations

  1. 1.Research Institute for Information TechnologyKyushu UniversityFukuokaJapan
  2. 2.Faculty of MathematicsKyushu UniversityJapan

Personalised recommendations