Verified numerical computation for nonlinear equations

Article
  • 50 Downloads

Abstract

After the introduction basic properties of interval arithmetic are discussed and different approaches are repeated by which one can compute verified numerical approximations for a solution of a nonlinear equation.

Key words

fixed point iteration Newton-like methods nonsmooth equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Alefeld, Intervallrechnung über den komplexen Zahlen und einige Anwendungen. Ph.D. thesis, Universität Karlsruhe, Karlsruhe, 1968.Google Scholar
  2. [2]
    G. Alefeld, Inclusion methods for systems of nonlinear equations—the interval Newton method and modifications. Topics in Validated Computations, J. Herzberger (ed.), Elsevier, Amsterdam, 1994, 7–26.Google Scholar
  3. [3]
    G. Alefeld, X. Chen and F. Potra, Numerical validation of solutions of linear complementarity problems. Numer. Math.,83 (1999), 1–23.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    G. Alefeld, X. Chen and F. Potra, Numerical validation of solutions of complementarity problems: the nonlinear case. Numer. Math.,92 (2002), 1–16.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    G. Alefeld and J. Herzberger, Einführung in die Intervallrechnung. Bibliographisches Institut, Mannheim, 1974.MATHGoogle Scholar
  6. [6]
    G. Alefeld and J. Herzberger, Introduction to Interval Computations., Academic Press, New York, 1983.MATHGoogle Scholar
  7. [7]
    G. Alefeld and G. Mayer, Interval analysis. Theory and applications. J. Comp. Appl. Math.,121 (2000), 421–464.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    G. Alefeld and U. Schäfer, Iterative methods for linear complementarity problems with interval data. Computing,70 (2003), 235–259.MATHMathSciNetGoogle Scholar
  9. [9]
    G. Alefeld, Z. Shen and Z. Wang, Enclosing solutions of linear complementarity problems for H-matrices. Reliable Computing,10 (2004), 423–435.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    G. Alefeld and Z. Wang, Verification of solutions of almost linear complementarity problems. Annals of the European Academy of Sciences 2005, EAS Publishing House, 211–231.Google Scholar
  11. [11]
    X. Chen, A verification method for solutions of nonsmooth equations. Computing,58 (1997), 281–294.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    R. Krawczyk, Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Computing,4 (1969), 187–201.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    A. Neumaier, Interval Methods for Systems of Equations. University Press, Cambridge, 1990.MATHGoogle Scholar
  14. [14]
    H. Schwandt, Schnelle fast global konvergente Verfahren für die Fünf-Punkte-Diskrestisierung der Poissongleichung mit Dirichletschen Randbedingungen auf Rechteckgebieten. Thesis, Fachbereich Mathematik der TU Berlin, Berlin, 1981.Google Scholar

Copyright information

© JJIAM Publishing Committee 2009

Authors and Affiliations

  1. 1.University of KarlsruheKarlsruheGermany

Personalised recommendations