Chinese Science Bulletin

, Volume 49, Issue 15, pp 1543–1553 | Cite as

Progress in the synthesis and reactivity studies of metallabenzenes

  • Guomei He
  • Haiping XiaEmail author
  • Guocheng Jia


Metallabenzenes are metallacyclohexatriene complexes that are derived by replacement of one of the CH groups in benzene with a transition-metal fragment. Their synthesis and aromatic properties have recently attracted considerable attention. This paper summarizes the progress in the synthesis, aromatic property, and reactivity studies of metallabenzenes. We will describe the synthesis and reactivity of typical metallabenzenes with various metals (e.g. osmium, iridium, and ruthenium, etc.), the synthesis and structure of a recent reported example of metallanaphthalene and several rare examples of novel and stable metallabenzynes. Finally, the possible future developments in this field have also been suggested.


aromaticity metal-carbene metal-carbyne metallabenzene metallanaphthalene metallabenzyne 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kekulé, F. A., Sur la constitution des substances aromatiques, Bull. Soc. Chim., 1865, 3(2): 98–111.Google Scholar
  2. 2.
    Kekulé, F. A., Note sur quelques produits de substitution de la benzine, Bull. Acad. R. Belg., 1865, 19: 551–563.Google Scholar
  3. 3.
    Ashe, A. J., The group 5 heterobenzenes, III. Acc. Chem. Res., 1978, 11(4): 153–157.CrossRefGoogle Scholar
  4. 4.
    Jutzi, P., New element-carbon (p-p)π bonds, Angew. Chem. Int. Ed. Engl., 1975, 14(4): 232–245.CrossRefGoogle Scholar
  5. 5.
    Thorn, D. L., Hoffmann, R., Delocalization in metallocycles, Nouv. J. Chim., 1979, 3(1): 39–45.Google Scholar
  6. 6.
    Bleeke, J. R., Metallabenzenes, Chem. Rev., 2001, 101(5): 1205–1227.CrossRefGoogle Scholar
  7. 7.
    Elliott, G. P., Roper, W. R., Waters, J. M., Metallacyclohexatrienes or “metallabenzenes”, J. Chem. Soc. Chem. Commun., 1982, (14): 811–813.Google Scholar
  8. 8.
    Elliott, G. P., Mcauley, N. M., Roper, W. R., An osmium containing benzene analog and its precursors, Inorg. Synth., 1989, 26: 184–189.CrossRefGoogle Scholar
  9. 9.
    Rickard, C. E. F., Roper, W. R., Woodgate, S. D. et al., Electrophilic aromatic substitution reactions of a metallabenzene, Angew. Chem. Int. Ed., 2000, 39(4): 750–752.CrossRefGoogle Scholar
  10. 10.
    Bleeke, J. R., Peng, W. -J., Synthesis, structure, and spectroscopy of iridacyclohexadiene complexes, Organometallics, 1987, 6(7): 1576–1578.CrossRefGoogle Scholar
  11. 11.
    Bleeke, J. R., Metallabenzene chemistry, Acc. Chem. Res., 1991, 24(9): 271–277.CrossRefGoogle Scholar
  12. 12.
    Gilbertson, R. D., Weakley, T. J. R., Haley, M. M., Direct synthesis of an iridabenzene from a nucleophilic 3-vinyl-1-cyclopropene, J. Am. Chem. Soc., 1999, 121(11): 2597–2598.CrossRefGoogle Scholar
  13. 13.
    Gilbertson, R. D., Weakley, T. J. R., Haley, M. M., Synthesis, characterization, and isomerization of an iridabenzvalene, Chem. Eur. J., 2000, 6(3): 437–441.CrossRefGoogle Scholar
  14. 14.
    Gilbertson, R. D., Lau, T. L. S., Lanza, S. et al., Synthesis, spectroscopy, and structure of a family of iridabenzenes generated by the reaction of Vaska-type complexes with a nucleophilic 3-vinyl-1-cyclopropene, Organometallics, 2003, 22(16): 3279–3289.CrossRefGoogle Scholar
  15. 15.
    Hemond, R. C., Hughes, R. P., Robinson, D. J. et al., Activation of a fluorinated carbon-carbon bond by oxidative addition of tetrafluorocyclopropene to platinum(0), Organometallics, 1988, 7(10): 2239–2241.CrossRefGoogle Scholar
  16. 16.
    Hughes, R. P., King, M. E., Robinson, D. J. et al., Stereoselective oxidative additions of a carbon-carbon σ-bond in tetrafluorocyclopropene to iridium (I) complexes, J. Am. Chem. Soc., 1989, 111(24): 8919–8920.CrossRefGoogle Scholar
  17. 17.
    Binger, P., Müller, P., Hermann, A. T. et al., Metallacyclobutene aus η2-Cyclopropen-Komplexen des titanocens und zirkonocens, Chem. Ber., 1991, 124(10): 2165–2170.CrossRefGoogle Scholar
  18. 18.
    Hughes, R. P., Trujillo, H. A., Gauri, A. J., Stereoselective ring expansion of 3-Vinyl-1-cyclopropenes to give (5-Cyclopentadienyl) ruthenium and (4-Cyclohexadienone)iron complexes, Organometallics, 1995, 14(9): 4319–4324.CrossRefGoogle Scholar
  19. 19.
    Ferede, R., Allison, N. T., Possible formation of ferrabenzene and its novel conversion to 1,3-diphenyl-2-methoxyferrocene, Organometallics, 1983, 2(3): 463–465.CrossRefGoogle Scholar
  20. 20.
    Ferede, R., Hinton, J. F., Korfmacher, W. A. et al., Possible formation of rhenabenzene, Organometallics, 1985, 4(3): 614–616.CrossRefGoogle Scholar
  21. 21.
    Mike, C. A., Ferede, R., Allison, N. T., Evidence for rhenaphenanthrene formation and its conversion to fluorenone, Organometallics, 1988, 7(7): 1457–1459.CrossRefGoogle Scholar
  22. 22.
    Schrock, R. R., Pedersen, S. F., Churchill, M. R. et al., Formation of cyclopentadienyl complexes from tungstenacyclobutadiene complexes and the X-ray crystal structure of an 3-Cyclopropenyl complex, Organometallics, 1984, 3(10): 1574–1583.CrossRefGoogle Scholar
  23. 23.
    Hughes, R. P., Trujillo, H. A., Egan, J. W. et al., Iridium-promoted reactions of carbon-carbon bonds: skeletal rearrangement of a vinylcyclopropene during iridacyclohexadiene formation and subsequent isomerization of iridacyclohexadienes via α,α’-substituent migrations, J. Am. Chem. Soc., 2000, 122(10): 2261–2271.CrossRefGoogle Scholar
  24. 24.
    Bleeke, J. R., Behm, R., Xie, Y. -F. et al., Synthesis, structure, spectroscopy, and reactivity of a metallabenzene, Organometallics, 1997, 16(4): 606–623.CrossRefGoogle Scholar
  25. 25.
    Bleeke, J. R., Behm, R., Synthesis, structure, and reactivity of iridacyclohexadienone and iridaphenol complexes, J. Am. Chem. Soc., 1997, 119(36): 8503–8511.CrossRefGoogle Scholar
  26. 26.
    Bleeke, J. R., Xie, Y. -F., Bass, L. et al., Chemical reactivity of a metallabenzene, J. Am. Chem. Soc., 1991, 113(12): 4703–4704.CrossRefGoogle Scholar
  27. 27.
    Bleeke, J. R., Bass, L., Xie, Y. -F. et al., Chemistry of an (6-Metallabenzene) metal complex, J. Am. Chem. Soc., 1992, 114(11): 4213–4219.CrossRefGoogle Scholar
  28. 28.
    Iron, M. A., Martin, J. M. L., Boom, M. E., Cycloaddition reactions of metalloaromatic complexes of iridium and rhodium: a mechanistic DFT investigation, J. Am. Chem. Soc., 2003, 125(38): 11702–11709.CrossRefGoogle Scholar
  29. 29.
    Lin, W., Wilson, S. R., Girolami, G. S., The first unsubstituted metallabenzene complex, J. Chem. Soc. Chem. Commun., 1993, (3): 284–285.Google Scholar
  30. 30.
    Bosch, H. W., Hund, H. -U., Nietlispach, D. et al., General route to the “half-open” metallocenes C5Me5Ru(pentadienyl) and C5Me5Ru (diene)Cl, Organometallics, 1992, 11(6): 2087–2098.CrossRefGoogle Scholar
  31. 31.
    Yand, J., Jones, W. M., Detection of a ruthenabenzene, ruthenaphenoxide, and ruthenaphenanthrene oxide: the first metalla aromatics of a second-row transition metal, J. Am. Chem. Soc., 1995, 117(38): 9776–9777.CrossRefGoogle Scholar
  32. 32.
    Englert, U., Podewils, F., Schiffers, I. et al., The first homoleptic metallabenzene sandwich complex, Angew. Chem. Int. Ed., 1998, 37(15): 2134–2136.CrossRefGoogle Scholar
  33. 33.
    Liu, S. H., Ng, W. S., Chu, H. S. et al., A triple-decker complex with a central metallabenzene, Angew. Chem. Int. Ed., 2002, 41(9): 1589–1591.CrossRefGoogle Scholar
  34. 34.
    Hein, J., Jeffery, J. C., Sherwood, P. et al., Chemistry of polynuclear metal complexes with bridging carbene or carbyne ligands, J. Chem. Soc. Dalton. Trans., 1987, (9): 2211–2218.Google Scholar
  35. 35.
    Bertling, U., Englert, U., Salzer, A., From triple-decker to metallabenzene: a new generation of sandwich complexes, Angew. Chem. Int. Ed. Engl., 1994, 33(9): 1003–1004.CrossRefGoogle Scholar
  36. 36.
    Jacob, V., Weakley, T. J. R., Haley, M. M., Metallabenzenes and valence isomers: synthesis and characterization of a platinabenzene, Angew. Chem. Int. Ed., 2002, 41(18): 3470–3473.CrossRefGoogle Scholar
  37. 37.
    Kralik, M. S., Rheingold, A. L., Ernst, R. D., (Pentadienyl)molybdenum carbonyl chemistry: conversion of a pentadienyl ligand to a coordinated metallabenzene complex, Organometallics, 1987, 6(12): 2612–2614.CrossRefGoogle Scholar
  38. 38.
    Chen, J., Daniels, L. M., Angelici, R. J., New modes of thiophene coordination and reactivity: structures of Cp*Ir(2-thiophene), an iridathiabenzene, and Cp*Ir(4-thiophene.BH3), J. Am. Chem. Soc., 1990, 112(1): 199–204.CrossRefGoogle Scholar
  39. 39.
    Bianchini, C., Meli, A., Peruzzini, M. et al., Opening, desulfurization, and hydrogenation of thiphene at iridium, J. Am. Chem. Soc., 1993, 115(7): 2731–2742.CrossRefGoogle Scholar
  40. 40.
    Bianchini, C., Meli, A., Peruzzini, M. et al., HDS model systems, coordination, opening, and hydrogenation of Benzo[b]thiophene at iridium, J. Am. Chem. Soc., 1994, 116(10): 4370–4381.CrossRefGoogle Scholar
  41. 41.
    Chin, R. M., Jones, W. D., Dimerization of thiophene to give a linear S(CH)8S fragment with [(C5Me5)Rh(C2H4)2], Angew. Chem. Int. Ed. Engl., 1992, 31(3): 357–358.CrossRefGoogle Scholar
  42. 42.
    Feng, S. G., White, P. S., Templeton, J. L., Amine addition to coordinated nitriles in tungsten (II) alkyne complexes, Organometallics, 1993, 12(5): 1765–1774.CrossRefGoogle Scholar
  43. 43.
    Profilet, R. D., Fanwick, P. E., Rothwell, I. P., 1,3-Dimetallabenzene derivatives of niobium or tantalum, Angew. Chem. Int. Ed. Engl., 1992, 31(9): 1261–1263.CrossRefGoogle Scholar
  44. 44.
    Riley, P. N., Profilet, R. D., Salberg, M. M. et al., 1,3-Dimetallabenzene’ derivatives of niobium or tantalum, polyhedron, 1998, 17(5–6): 773–779.Google Scholar
  45. 45.
    Paneque, M., Posadas, C. M., Poveda, M. L. et al., Formation of unusual iridabenzene and metallanaphthalene containing electronwithdrawing substituents, J. Am. Chem. Soc., 2003, 125(33): 9898–9899.CrossRefGoogle Scholar
  46. 46.
    Álvarez, E., Gómez, M., Paneque, M. et al., Coupling of internal alkynes in TpMe2Ir derivatives: selective oxidation of a noncoordinated double bond of the resulting iridacycloheptatrienes, J. Am. Chem. Soc., 2003, 125(6): 1478–1479.CrossRefGoogle Scholar
  47. 47.
    Roper, W. R., First metallabenzenes and now a stable metallabenzyne, Angew. Chem. Int. Ed., 2001, 40(13): 2440–2441.CrossRefGoogle Scholar
  48. 48.
    Wen, T. B., Zhou, Z. Y., Jia, G., Synthesis and characterization of a metallabenzyne, Angew. Chem. Int. Ed., 2001, 40(10): 1951–1954.CrossRefGoogle Scholar
  49. 49.
    Wen, T. B., Ng, S. M., Hung, W. Y. et al., Protonation and bromination of an osmabenzyne: reactions leading to the formation of new metallabenzynes, J. Am. Chem. Soc., 2003, 125(4): 884–885.CrossRefGoogle Scholar
  50. 50.
    Clark, G. R., Edmonds, N. R., Pauptit, R. A. et al., Octahedral carbyneosmium (II) complexes, J. Organomet. Chem., 1983, 244(4): C57-C60.CrossRefGoogle Scholar
  51. 51.
    Clark, G. R., Cochrane, C. M., Marsden, K. et al., Synthesis and some reactions of a terminal carbyne complex of osmium, J. Organomet. Chem., 1986, 315(2): 211–230.CrossRefGoogle Scholar
  52. 52.
    Hodges, L. M., Sabat, M., Harman, W. D., Carbynes and carbenes in coordination chemistry: a new class of pentaammine and tetraammine complexes of osmium(II), Inorg. Chem., 1993, 32(4): 371–372.CrossRefGoogle Scholar
  53. 53.
    Baker, L-J., Clark, G. R., Rickard, C. E. F. et al., Syntheses and reactions of the carbyne complexes, J. Organomet. Chem., 1998, 551(1–2): 247–259.CrossRefGoogle Scholar
  54. 54.
    Werner, H., Jung, S., Weberndörfer, B. et al., Vinylidene transitionmetal complexes, 50 carbynehydrido- and vinylidenehydridoosmium complexes with Os(PCy3)2 as a molecular unit, Eur. J. Inorg. Chem., 1999, (6): 951–957.Google Scholar
  55. 55.
    Ng, S. M., Huang, X., Wen, T. B. et al., Theoretical studies on the stabilities of metallabenzynes, Organometallics, 2003, 22(19): 3898–3904.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.Department of ChemistryThe Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations