Chinese Science Bulletin

, Volume 48, Issue 17, pp 1862–1869 | Cite as

Calcium carbonate pump during Quaternary glacial cycles in the South China Sea

  • Zhifei LiuEmail author
  • Jian Xu
  • Jun Tian
  • Pinxian Wang


The preservation and dissolution of calcium carbonate (namely calcium carbonate pump) controls the pH of seawater in global oceans by its buffer effect, and in turn plays a significant role in global changes in atmospheric CO2 concentration. The results from measured carbonate contents over the past 2 Ma at ODP Site 1143 in the South China Sea provide high-resolution records to explore the process of the calcium carbonate pump during Quaternary glacial cycles. The results indicate statistically that the highest carbonate accumulation rate leads the lightest δ18O by about 3.6 ka at transitions from glacials to interglacials, and that the strongest carbonate dissolution lags the lightest δ18O by about 5.6 ka at transitions from interglacials to glacials. The calcium carbonate pump releases CO2 to the atmosphere at the glacial-interglacial transitions, but transports atmospheric CO2 to deep sea at the interglacial-glacial transitions. The adjustable function of the calcium carbonate pump for the deep-sea CO 3 2− concentration directly controls parts of global changes in atmospheric CO2, and contributes the global carbon cycle system during the Quaternary.


calcium carbonate pump biological pump glacial cycles Quaternary South China Sea Ocean Drilling Program (ODP) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hays, J. D., Imbrie, J., Shackleton, N. J., Variations in the Earth’s orbit: pacemaker of the Ice Ages, Science, 1976, 194: 1121–1132.CrossRefGoogle Scholar
  2. 2.
    Sigman, D. M., Boyle, E. A., Glacial/interglacial variations in atmospheric carbon dioxide, Nature, 2000, 407: 859–869.CrossRefGoogle Scholar
  3. 3.
    Webb, R. S., Lehman, S. J., Rind, D. H. et al., Influence of ocean heat transport on the climate of the Last Glacial Maximum, Nature, 1997, 385: 695–699.CrossRefGoogle Scholar
  4. 4.
    Petit, J. R., Jouzel, J., Raynaud, D. et al., Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 1999, 399: 429–436.CrossRefGoogle Scholar
  5. 5.
    Adams, J. M., Faure, H., Faure-Denard, L. et al., Increases in terrestrial carbon storage from the Last Glacial Maximum to the present, Nature, 1990, 348: 711–714.CrossRefGoogle Scholar
  6. 6.
    Guilderson, T. P., Fairbanks, R. G., Rubenstone, J. L., Tropical temperature variations since 20000 years ago: modulating interhemispheric climate change, Science, 1994, 263: 663–665.CrossRefGoogle Scholar
  7. 7.
    Broecker, W., Peng, T.-H., The role of CaCO3 compensation in the glacial to interglacial atmospheric CO2change, Glob. Biogeochem. Cycles, 1987, 1: 15–29.CrossRefGoogle Scholar
  8. 8.
    McElroy, M. B., Marine geological controls on atmospheric CO2and climate, Nature, 1983, 302: 328–329.CrossRefGoogle Scholar
  9. 9.
    Sarmiento, J. L., Toggweiler, J. R., A new model for the role of the oceans in determining atmospheric pCO2, Nature, 1983, 308: 621–624.CrossRefGoogle Scholar
  10. 10.
    Elderfield, H., Carbonate mysteries, Science, 2002, 296: 1618–1621.CrossRefGoogle Scholar
  11. 11.
    Broecker, W. S., Ocean chemistry during glacial time, Geochim. Cosmochim. Acta, 1982, 46: 1689–1706.CrossRefGoogle Scholar
  12. 12.
    Anderson, R. F., Chase, Z., Fleisher, M. Q. et al., The Southern Ocean’s biological pump during the Last Glacial Maximum, Deep Sea Res. II, 2002, 49: 1909–1938.CrossRefGoogle Scholar
  13. 13.
    Jansen, H., Modelling the marine carbonate pump and its implications on the atmospheric CO2concentration, Bremen: Universität Bremen (Dissertation), 2001, 1–128.Google Scholar
  14. 14.
    Broecker, W. S., Sanyal, A., Magnitude of the CaCO3 dissolution events making the onset of times of glaciation, Paleoceanography, 1997, 12: 530–532.CrossRefGoogle Scholar
  15. 15.
    Broecker, W. S., Clark, E., Glacial-to-Holocene redistribution of carbonate ion in the deep sea, Science, 2001, 294: 2152–2155.CrossRefGoogle Scholar
  16. 16.
    Anderson, D. M., Archer, D., Glacial-interglacial stability of ocean pH inferred from foraminifer dissolution rates, Nature, 2002, 416: 70–73.CrossRefGoogle Scholar
  17. 17.
    Keir, R. S., Berger, W. H., Atmospheric CO2content in the last 120,000 years: the phosphate-extraction model, J. Geophys. Res., 1983, 88: 6027–6038.CrossRefGoogle Scholar
  18. 18.
    Peterson, L. C., Prell, W. L., Carbonate preservation and rates of climatic change: an 800 kyr record from the Indian Ocean (eds. Sundquist, E. T., Broecker, W. S.), The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present, Washington, D. C: AGU, Geophys. Monogr. 32, 1985, 251–269.Google Scholar
  19. 19.
    Wu, G., Yasuda, M. K., Berger, W. H., Late Pleistocene carbonate stratigraphy on Ontong-Java Plateau in the western equatorial Pacific, Mar. Geol., 1991, 99: 135–150.CrossRefGoogle Scholar
  20. 20.
    Le, J., Shackleton, N. J., Carbonate dissolution fluctuations in the western equatorial Pacific during the Late Quaternary, Paleoceanography, 1992, 7: 21–42.CrossRefGoogle Scholar
  21. 21.
    Curry, W. B., Lohmann, G. P., Late Quaternary carbonate sedimentation at the Sierra Leone Rise (eastern equatorial Atlantic Ocean), Mar. Geol., 1986, 70: 223–250.CrossRefGoogle Scholar
  22. 22.
    Hodell, D. A., Charles, C. D., Sierro, F. J., Late Pleistocene evolution of the ocean’s carbonate system, Earth Planet. Sci. Lett., 2001, 192: 109–124.CrossRefGoogle Scholar
  23. 23.
    Sanyal, A., Hemming, N. G., Hanson, G. N. et al., Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera, Nature, 1995, 373: 234–236.CrossRefGoogle Scholar
  24. 24.
    Wang, H., Jain, Z., Carbonate dilution cycles in the late Quaternary South China Sea (eds. Ye, Z., Wang, P.), Contributions to Late Quaternary Paleoceanography of the South China Sea (in Chinese with English abstract), Qingdao: Qingdao Ocean Univ. Press, 1992, 283–294.Google Scholar
  25. 25.
    Wang, P., Prell, W. L., Blum, P. et al., Proceedings of the ODP, Initial Reports 184, College Station: Ocean Drilling Program, Texas A&M University, 2000, 1–103 [CD-ROM].Google Scholar
  26. 26.
    Rottmann, M. L., Dissolution of planktonic foraminifera and pteropods in South China Sea sediments, J. Foraminiferal Res., 1979, 9: 41–49.CrossRefGoogle Scholar
  27. 27.
    Miao, Q. R., Thunell, C., Anderson, D. M., Glacial-Holocene carbonate dissolution and sea surface temperatures in the South China and Sulu seas, Paleoceanography, 1994, 9: 269–290.CrossRefGoogle Scholar
  28. 28.
    Hanebuth, T., Stattegger, K., Grootes, P. M., Rapid flooding of the Sunda Shelf: A late-glacial sea-level record, Science, 2000, 288: 1033–1035.CrossRefGoogle Scholar
  29. 29.
    Thunell, R. C., Miao, Q., Calvert, S. E. et al., Glacial-Holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2, Paleoceanography, 1992, 7: 143–162.CrossRefGoogle Scholar
  30. 30.
    Wang, P., Tian, J., Cheng, X., Transition of Quaternary glacial cyclicity in deep-sea records at Nansha, the South China Sea, Science in China, Ser. D, 2001, 44(10): 926–933.CrossRefGoogle Scholar
  31. 31.
    Shackleton, N. J., Berger, A., Peltier, W. R., An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677, Transactions of the Royal Society of Edinburgh: Earth Sciences, 1990, 81: 251–261.Google Scholar
  32. 32.
    Tian, J., Wang, P., Cheng, X. et al., Astronomically tuned Plio-Pleistocene benthic δ18O record from South China Sea and Atlantic-Pacific comparison, Earth Planet. Sci. Lett., 2002, 203: 1015–1029.CrossRefGoogle Scholar
  33. 33.
    Jones, A., Kaiteris, P., A vacuum gasometic technique for rapid and precise analysis of calcium carbonate in sediments and soils, J. Sediment. Petrol., 1983, 53: 655–660.Google Scholar
  34. 34.
    Howard, W. R., Prell, W. L., Late Quaternary CaCO3 production and preservation in the Southern Ocean: Implications for oceanic and atmospheric carbon cycling, Paleoceanography, 1994, 9: 453–482.CrossRefGoogle Scholar
  35. 35.
    Howell, P., ARAND time series and spectral analysis package for the Macintosh, Brown University, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-044, Boulder, Colorado, USA: NOAA/NGDC Paleoclimatology Program, 2001.Google Scholar
  36. 36.
    Imbrie, J., Hays, J. D., Martinson, D. G. et al., The ordital theory of Pleistocene climate: A support from a revised chronology of the marine δ18O record (eds. Berger, A., Imbrie, J.), Milankovitch and Climate, Mass: Hingham, 1984, 269–305.Google Scholar
  37. 37.
    Ruddman, W. F., Pleistocene sedimentation in the equatorial Atlantic: Stratigraphy and faunal paleoclimatology, Bull. Geol. Soc. Am., 1971, 82: 283–302.CrossRefGoogle Scholar
  38. 38.
    Wang, P., Min, Q., Bian, Y. et al., Planktonic foraminifera in the continental slope of the northern South China Sea during the last 130,000 years and their paleoceanographic implications, Acta Geol. Sin. (in Chinese and English abstract), 1986, 60: 215–225.Google Scholar
  39. 39.
    Wang, P., Wang, L., Bian, Y. et al., Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles, Mar. Geol., 1995, 127: 145–165.CrossRefGoogle Scholar
  40. 40.
    Fischer, H., Wahlen, M., Smith, J. et al., Ice cope records of atmospheric CO2around the last three glacial terminations, Science, 1999, 283: 1712–1714.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  1. 1.Laboratory of Marine GeologyTongji UniversityShanghaiChina

Personalised recommendations