Advertisement

Chinese Science Bulletin

, Volume 49, Issue 9, pp 961–966 | Cite as

Mantle olivine xenocrysts entrained in Mesozoic basalts from the North China craton: Implication for replacement process of lithospheric mantle

  • Hongfu ZhangEmail author
  • Jifeng Ying
  • Ping Xu
  • Yuguang Ma
Article

Abstract

Mesozoic (125 Ma) Fangcheng basalts from Shandong Province contain clearly zoned olivines that are rare in terrestrial samples and provide first evidence for the replacement of lithospheric mantle from high-Mg peridotites to low-Mg peridotites through peridotite-melt reaction. Zoned olivines have compositions in the core (Mg# = 87.2–90.7) similar to those olivines from the mantle peridotitic xenoliths entrained in Cenozoic basalts from the North China craton and in the rim (Mg# = 76.8–83.9) close to olivine phenocrysts of the host basalts (75.7–79.0). These compositional features as well as rounded crystal shapes and smaller grain sizes (300–800 μm) demonstrate that these zoned olivines are mantle xenocrysts, i.e. disaggregates of mantle peridotites. Their core compositions can represent those of olivines of mantle peridotites. The zoned texture of olivines was formed through rapid reaction between the olivine xenocryst and the host basalt. This olivine-basaltic melt reaction could have been ubiquitous in the Mesozoic lithospheric mantle beneath the North China craton, i.e. an important type of the replacement of lithospheric mantle. The reaction resulted in the transformation of the Paleozoic refractory (high-Mg) peridotites to the late Mesozoic fertile (low-Mg) and radiogenic isotope-enriched peridotites, leading to the loss of old lithospheric mantle.

Keywords

North China craton Mesozoic basalt xenocrysts lithospheric mantle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mitchell, R. H., Kimberlites: Mineralogy, Geochemistry, and Petrology, New York: Plenum Press, 1986.Google Scholar
  2. 2.
    Dong, Z. X., Chinese Kimberlites (in Chinese), Beijing: Science Press, 1994, 229–239.Google Scholar
  3. 3.
    Chi, J. S., Lu, F. X., Zhao, L. et al., Kimberlites on the North China Craton and Features of Paleozoic Lithospheric Mantle (in Chinese), Beijing: Science Press, 1996.Google Scholar
  4. 4.
    El, M. L., Zhao, D. S., Cenozoic Basalts and Their Entrained Deep-seated Xenoliths in Eastern China (in Chinese), Beijing: Science Press, 1987.Google Scholar
  5. 5.
    Chi, J. S., Cenozoic Basalts and Upper Mantle Research in Eastern China (kimberlites attached) (in Chinese), Beijing: China University of Geosciences Press, 1988.Google Scholar
  6. 6.
    Liu, R. X., Geochronology and Geochemistry of Chinese Mesozoic Basalts (in Chinese), Beijing: Seismological Press, 2002.Google Scholar
  7. 7.
    Liao, Z. G., Liu, Y. L., Huang, B. L., Effect of fine-grained olivine crystal on the K-Ar age determination of late Cenozoic olivine basalts, China, Chinese Science Bulletin (in Chinese), 1998, 43(1): 764–766.Google Scholar
  8. 8.
    Sheng, L., Should K-Ar isotopic ages of olivine basalts be re-tested? Chinese Science Bulletin (in Chinese), 1998, 43(7): 689–690.Google Scholar
  9. 9.
    Xu, W. L., Zheng, C. Q., Wang, D. Y., Discovery of the mantle and lower crust xenoliths in Mesozoic trachy-basalts in Liaoxi, China and its significance, Geology Review (in Chinese), 1999, 45(suppl.): 444–449.Google Scholar
  10. 10.
    Yan, J., Chen, J. F., Xie, Z. et al., Mantle xenoliths from Late Cretaceous basalt in eastern Shandong Province: New constraint on the timing of lithospheric thinning in eastern China, Chinese Science Bulletin, 2003, 48(19): 2139–2144.CrossRefGoogle Scholar
  11. 11.
    Zhang, H. F., Sun, M., Zhou, X. H. et al., Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites, Geochimca et Cosmochimca Acta, 2003, 67(22): 4373–4387.[DOI] CrossRefGoogle Scholar
  12. 12.
    Zhang, H. F., Sun, M., Zhou, X. H. et al., Mesozoic lithosphere destruction beneath the North China Craton: evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng basalts, Contribution to Mineralogy and Petrology, 2002, 144: 241–253.Google Scholar
  13. 13.
    Zheng, J.-P., O’Reilly, S. Y., Griffin, W. L. et al., Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution, Lithos., 2001, 57: 43–66.[DOI] CrossRefGoogle Scholar
  14. 14.
    Zhou, M. F., Robinson, P. T., Malpas, J. et al., Podiform chromitites in Luobusa ophiolite (Southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle, Journal of Petrology, 1996, 37: 3–21.CrossRefGoogle Scholar
  15. 15.
    Zhou, M. F., Robinson, P. T., Malpas, J. et al., Melt/rock interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China), Journal of Asian Earth Sciences, 2001, 19: 517–534.[DOI] CrossRefGoogle Scholar
  16. 16.
    Kelemen, P. B., Reaction between ultramafic rock and fractionating basaltic magma I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite, Journal of Petrology, 1990, 31: 51–98.Google Scholar
  17. 17.
    Bodinier, J. L., Vasseur, G., Vernieres, J. et al., Mechanisms of mantle metasomatism: geochemical evidence from the Lherz orogemc pendotite, Journal of Petrology, 1990, 31: 597–628.Google Scholar
  18. 18.
    Quick, J. E., The origin and significance of large, tabular dunite bodies in the Trinity peridotite, Northern California, Contributions to Mineralogy and Petrology, 1981, 78: 413–422.CrossRefGoogle Scholar
  19. 19.
    Kelemen, P. B., Ghiorse, M. S., Assimilation of peridotite in zoned calc-alkaline plutonic complxes: evidence from the Big Jim Complex, Washington Cascades, Contributions to Mineralogy and Petrology, 1986, 94: 12–28.CrossRefGoogle Scholar
  20. 20.
    Kelemen, P. B., Dick, J. B., Quick, J. E., Formation of harzburgite by pervasive melt/rock reaction in the upper mantle, Nature, 1992, 358: 635–640.[DOI] CrossRefGoogle Scholar
  21. 21.
    Zhang, H. F., Menzies, M. A., Gurney, J. et al., Cratonic peridotites and silica-rich melts: diopside-enstatite relationships in polymict xenoliths, Kaapvaal, South Africa, Geochimca et Cosmochimca Acta, 2001, 65: 3365–3377.[DOI] CrossRefGoogle Scholar
  22. 22.
    Niu, Y. L., Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites, Journal of Petrology, 1997, 38: 1047–1074.[DOI] CrossRefGoogle Scholar
  23. 23.
    Fisk, M. R., Basalt-magma interactions with harzburgite and the formation of high magnesium andesites, Geophysical Research Letters, 1986, 13: 467–470.CrossRefGoogle Scholar
  24. 24.
    Daines, M. J., Kohlstedt, D. L., The transition from porous to channelized flow due to melt/rock reaction during melt migration, Geophysical Research Letters, 1994, 21: 145–148.[DOI] CrossRefGoogle Scholar
  25. 25.
    Kelemen, P. B., Joyce, D. M., Webster, J. D. et al., Reaction between ultramafic rock and fractionating basaltic magma-Experimental investigation of reaction between olivine tholeiites and harzburgite at 1150-4050- and 5 kar. Journal of Petrology, 1990, 31: 99–134.Google Scholar
  26. 26.
    Kelemen, P. B., Hart, S. R., Bernstein, S., Silica enrichment in the continental upper mantle via melt/rock reaction, Earth and Planetary Science Letters, 1998, 164: 387–406. [DOI]CrossRefGoogle Scholar
  27. 27.
    Zhang, H. F., Menzies, M. A., Mattey, D., Mixed mantle provenance: diverse garnet compositions in polymict peridotites, Kaapvaal craton, South Africa, Earth and Planetary Science Letters, 2003, 216(3): 329–346.[DOI] CrossRefGoogle Scholar
  28. 28.
    Boyd, F. R., Compositional distinction between oceanic and cratonic lithosphere, Earth Planetary Science Letters, 1989, 96: 15–26.[DOI] CrossRefGoogle Scholar
  29. 29.
    Boyd, F. R., Pokhilenko, N. P., Pearson, D. G. et al., Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths, Contribution to Mineralogy and Petrology, 1997, 128: 228–246.[DOI] CrossRefGoogle Scholar
  30. 30.
    Gaul, O. F., Griffin, W. L., O’Reilly, S. Y. et al., Mapping olivine composition in the lithospheric mantle, Earth and Planetary Science Letters, 2000, 182: 223–235.[DOI] CrossRefGoogle Scholar
  31. 31.
    Chen, L. H., Zhou, X. H., Ultramafic xenoliths in Mesozoic diorites in west Shandong Province, Science in China, Ser. D, 2004, 47(6): 489–499.CrossRefGoogle Scholar
  32. 32.
    Xu, W. L., Wang, D. Y., Gao, S. et al., Discovery of dunite and pyroxenite xenoliths in Mesozoic diorite at Jinling, western Shandong and its significance, Chinese Science Bulletin, 2003, 48(15): 599–1604.Google Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  • Hongfu Zhang
    • 1
    Email author
  • Jifeng Ying
    • 1
  • Ping Xu
    • 1
  • Yuguang Ma
    • 1
  1. 1.Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina

Personalised recommendations