Chinese Science Bulletin

, Volume 50, Issue 21, pp 2457–2466 | Cite as

Cloning of the key genes in maize oxylipins pathways and their roles in herbivore induced defense

  • Tao Xu
  • Jianwu Wang
  • Shiming Luo


To gain an understanding of the molecular basis of signaling pathways in herbivore-induced maize plant defense, three key genes,ZmAOS, ZmAOC andZmHPL, which are involved in the biosynthesis of oxylipin signals, have been cloned using RT-PCR in this study. Beet armyworm (BAW) infestation induced the systemic expression of the key genes involved in the biosynthesis of oxylipin signals similar to exogenous methyl jasmonate (MeJA). Moreover, the systemic expression patterns of maize defense-related genes were similar between maize leaves induced by jasmonic acid (JA) and damaged by BAW. Previous treatment with salicyhydroxamic acid (SHAM), an inhibitor of jasmonates (JAs) signal pathway followed by BAW infestation did not induce the systemic expression of the defense-related genes. Exposure to the vapors of green leafy volatiles (GLVs, (Z)-3-hexen-1-ol, (E)-2-hexenal, (E)-3-hexenal) and β-ocimene induced the expression of the defense-related genes, as well as the key genes involved in biosynthesis of JAs. However, previous treatment with SHAM clearly decreased the transcript levels of the defense genes induced by (Z)-3-hexen-1-ol, (E)-2-hexenal and (E)-3-hexenal. These results demonstrate the major role of oxylipin signal pathway in herbivore-induced maize chemical defense. JA was the endogenous signal in the process of herbivore-induced maize systemic defense. GLVs, another group of oxylipin, played an important role in the process of herbivore-induced systemic defense outside the plant. Furthermore, the expression of defense-related genes induced by GLVs was partially dependent on JAs signal pathway, while β-ocimene induction was independent of JAs signal pathway.


maize beet armyworm (BAW) herbivore-induced defense oxylipin signaling pathways jasmonates (JAs) green leafy volatiles (GLVs) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karban, R., Baldwin, I. T., Induced Response to Herbivory, Chicago: The University of Chicago Press, 1997.Google Scholar
  2. 2.
    Kessler, A., Baldwin, I. T., Plant response to insect herbivory: The emerging molecular analysis, Annu. Rev. Plant Biol., 2002, 53: 299–328.CrossRefGoogle Scholar
  3. 3.
    Paré, P. W., Tumlinson, J. H., Induced synthesis of plant volatiles, Nature, 1997, 385: 30–31.CrossRefGoogle Scholar
  4. 4.
    Ryan, C. A., The systemin signaling pathway: Differential activation of plant defensive genes, Biochem. Biophy. Acta, 2000, 1477: 112–121.Google Scholar
  5. 5.
    Turlings, T. C. J., Tumlinson, J. H., Systemic release of chemical signals by herbivore-injured corn, Proc. Natl. Acad. Sci. USA, 1992, 89: 8399–8402.CrossRefGoogle Scholar
  6. 6.
    Lou, Y. G., Cheng, J. A., Herbivore-induced plant volatiles: Primary characteristics, ecological functions and its release mechanism, Acta Ecol. Sin. (in Chinese), 2000, 20: 1097–1106.Google Scholar
  7. 7.
    Baldwin, I. T., An ecologically motivated analysis of plant-herbivore interactions in native tobacco, Plant Physiol., 2001, 127: 1449–1458.CrossRefGoogle Scholar
  8. 8.
    Schmelz, E. A., Alborn, H. T., Engelberth, J. et al., Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize, Plant Physiol., 2003, 133: 295–306.CrossRefGoogle Scholar
  9. 9.
    Arimura, G., Ozawam, R., Nishioka, T. et al., Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants, Plant J., 2002, 29: 87–98.CrossRefGoogle Scholar
  10. 10.
    Stots, H. U., Koch, T., Biedermann, A. et al., Evidence for regulation of resistance inArobidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways, Planta, 2002, 214: 648–652.CrossRefGoogle Scholar
  11. 11.
    Li, L., Li, C., Lee, G. I. et al., Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato, Proc. Natl. Acad. Sci. USA, 2002, 99: 6416–6421.CrossRefGoogle Scholar
  12. 12.
    Halitschke, R., Baldwin, I. T., Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization inNicotiana attenuata, Plant J., 2003, 36: 794–807.CrossRefGoogle Scholar
  13. 13.
    Saedler, R., Baldwin, I. T., Virus-induced gene silencing of jasmonate-induced direct defences, nicotine and trypsin proteinase-inhibitors inNicotiana attenuata, J. Exp. Bot, 2004, 55: 151–157.CrossRefGoogle Scholar
  14. 14.
    Zavala, J. A., Patankar, A., Gase, K. et al., Manipulation of endogenous trypsin proteinase inhibitor production inNicotiana attenuata demonstrates their function as antiherbivore defenses, Plant Physiol., 2004, 134: 1181–1190.CrossRefGoogle Scholar
  15. 15.
    Zavala, J. A., Patankar, A., Gase, K. et al., Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs inNicotiana attenuata, Proc. Natl. Acad. Sci. USA, 2004, 101: 1607–1612.CrossRefGoogle Scholar
  16. 16.
    Thaler, J. S., Fidantsef, A. L., Bostock, R. M., Antagonism between jasmonate- and salicylate-mediated induced plant resistance: Effects of concentration and timing of elicitation on defense-related proteins, herbivores, and pathogen performace in tomato, J. Chem. Ecol., 2002, 28: 1131–1159.CrossRefGoogle Scholar
  17. 17.
    Gui, L. Y., Liu, S. S., Chen, Z. M., Plant resistance to insects induced by application of exogenous jasmonic acid and methyl jasmonate, Acta Entomol. Sin. (in Chinese), 2004, 47: 507–514.Google Scholar
  18. 18.
    Lu, Y. B., Liu, S. S., Effects of plant responses induced by exogenous jasmonic acid on host-selection behavior ofCotesia plutellae (Hymenoptera: Braconidae), Acta Entomol. Sin. (in Chinese), 2004, 47: 206–212.Google Scholar
  19. 19.
    Xu, T., Zhou, Q., Chen, W. et al., Involvement of jasmonate-signaling pathway in the herbivore-induced rice plant defense, Chin. Sci. Bull., 2003, 48(18): 1982–1987.CrossRefGoogle Scholar
  20. 20.
    Xu, T., Zhou, Q., Xia, Q. et al., Effects of herbivore-induced rice volatiles on the host selection behavior of brown planthopper,Nilaparvata lugens, Chin. Sci. Bull., 2002, 47(16): 1355–1360.CrossRefGoogle Scholar
  21. 21.
    Farmer, E. E., Ryan, C., An interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves, Proc. Natl. Acad. Sci. USA, 1990, 87: 7713–7716.CrossRefGoogle Scholar
  22. 22.
    Preston, C. A., Laue, G., Baldwin, I. T., Plant-plant signaling: Application of transor cis-methyl jasmonate equivalent to sagebrush releases does not elicit direct defenses in native tobacco, J. Chem. Ecol., 2004, 30: 2193–2214.CrossRefGoogle Scholar
  23. 23.
    Saona, C. R., Craft, S. J., Paré, P. W. et al., Exogenous methyl jasmonate induces volatile emissions in cotton plants, J. Chem. Ecol., 2001, 27: 679–695.CrossRefGoogle Scholar
  24. 24.
    Martin, D. M., Gershenzon, J., Bohlmann, J., Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce, Plant Physiol., 2003, 132: 1586–1599.CrossRefGoogle Scholar
  25. 25.
    Engelberth, J., Alborn, H. T., Schmelz, E. A. et al., Airborne signals prime plants against insect herbivore attack, Proc. Natl. Acad. Sci. USA, 2004, 101: 1781–1785.CrossRefGoogle Scholar
  26. 26.
    Feussner, I., Wasternack, C., The lipoxygenase pathway, Annu Rev. Plant Biol., 2002, 53: 275–297.CrossRefGoogle Scholar
  27. 27.
    Leon, J., Royo, J., Vancaneyt, G. et al., Lipoxygenase H1 gene silencing reveals a specific role in supplying fatty acid hydroperoxides for aliphatic aldehyde production, J. Biol. Chem., 2002, 277: 416–423.CrossRefGoogle Scholar
  28. 28.
    Halitschke, R., Ziegler, J., Keinänen, M. et al., Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk inNicotiana attenuata, Plant J., 2004, 40: 35–46.CrossRefGoogle Scholar
  29. 29.
    De Moraes, C. M., Mescher, M. C., Tumlinson, J. H., Caterpillar-induced nocturnal plant volatiles repel conspecific females, Nature, 2001, 410: 577–580.CrossRefGoogle Scholar
  30. 30.
    Kessler, A., Baldwin, I. T., Defensive function of herbivore-induced plant volatile emissions in nature, Science, 2001, 292: 2141–2144.CrossRefGoogle Scholar
  31. 31.
    Kessler, A., Halitschke, R., Baldwin, I. T., Silencing the jasmonate cascade: Induced plant defenses and insect populations, Science, 2004, 305: 665–668.CrossRefGoogle Scholar
  32. 32.
    Arimura, G. I., Ozawa, R., Horiuchi, J. I. et al., Plant-plant interactions mediated by volatiles emitted from plants infested by spider mites, Biochem. Sys. Ecol., 2001, 29: 1049–1061.CrossRefGoogle Scholar
  33. 33.
    Arimura, G. I., Ozawa, R., Shimoda, T. et al., Herbivory induced volatiles elicit defense genes in lima bean leaves, Nature, 2000, 406: 512–515.CrossRefGoogle Scholar
  34. 34.
    Bate, N. J., Rothstein, S. J., C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes, Plant J, 1998, 16: 561–569.CrossRefGoogle Scholar
  35. 35.
    Farmer, E. E., Surface-to-air signals, Nature, 2001, 411: 854–856.CrossRefGoogle Scholar
  36. 36.
    Paré, P. W., Tumlinson, J. H., Plant volatiles as a defense against insect herbivores, Plant Physiol., 1999, 121: 325–331.CrossRefGoogle Scholar
  37. 37.
    Alborn, H. T., Turlings, T. C. J., Jone, T. H. et al., An elicitor of volatile from beet armyworm oral secretion, Science, 1997, 276: 945–947.CrossRefGoogle Scholar
  38. 38.
    Mattiacci, L., Dicke, M., Posthumus, M. A. et al., β-Glucosidase: An elicitor of herbivore-induced plant odor that attracts host-seeking parasitic wasps, Proc. Natl. Acad. Sci. USA, 1995, 92: 2036–2040.CrossRefGoogle Scholar
  39. 39.
    Bernasconi, M. L., Turlings, T. C. J., Ambrosetti, L. et al., Herbivore-induced emissions of maize volatiles repel the corn leaf aphid,Rhopalosiphum maidis, Entomol. Exp. Appl., 1998, 87: 133–142.CrossRefGoogle Scholar
  40. 40.
    Dicke, M., Chemical ecology of host-plant selection by herbivorous arthropods: A multitrophic perspective, Biochem. Syst. Ecol., 2000, 28: 601–617.CrossRefGoogle Scholar
  41. 41.
    Han, B. Y., Zhang, Z. N., Fang, Y. L., Electrophysiology and behavior feedback of diamondback moth,Plutella xylostella, to volatile secondary metabolites emitted by Chinese cabbage, Chin. Sci. Bull., 2001, 46(24): 2086–2088.CrossRefGoogle Scholar
  42. 42.
    Kan, W., Zhang, F., Zhang, Z. N., Behavior-modulating plant volatile chemical for aphids, Chin. Sci. Bull., 2002, 47: 115–117.Google Scholar
  43. 43.
    Bruin, J., Dicke, M., Chemical information transfer between wounded and unwounded plants: backing up the future, Biochem. Syst. Ecol., 2001, 29: 1103–1113.CrossRefGoogle Scholar
  44. 44.
    Dicke, M., Bruin, J., Chemical information transfer between damaged and undamaged plants, Biochem. Syst. Ecol., 2001, 29: 979–980.CrossRefGoogle Scholar
  45. 45.
    Dicke, M., Bruin, J., Chemical information transfer between plants: Back to the future, Biochem. Syst. Ecol., 2001, 29: 981–994.CrossRefGoogle Scholar
  46. 46.
    Farag, M. A., Paré, P. W., C6-green leaf volatiles trigger local and systemic VOC emissions in tomato, Phytochemistry, 2002, 61: 545–554.CrossRefGoogle Scholar
  47. 47.
    Frey, M., Stettner, C., Paré, P. W. et al., An herbivore elicitor activates the gene for indole emission in maize, Proc. Natl. Acad. Sci. USA., 2000, 97: 14801–14806.CrossRefGoogle Scholar
  48. 48.
    Truitt, C. L., Wei, H. X., Paré, P. W., A plasma membrane protein fromZea mays binds with the herbivore elicitor volicitin, Plant Cell, 2004, 16: 523–532.CrossRefGoogle Scholar
  49. 49.
    Schmelz, E. A., Alborn, H. T., Banchio, E. et al., Quantitative relationships between induced jasmonic acid levels and volatile emission inZea mays duringSpodopterea exigua herbivory, Planta, 2003, 216: 665–673.Google Scholar
  50. 50.
    Schmelz, E. A., Alborn, H. T., Tumlinson, J. H., Synergistic interactions between volicitin, jasmonic acid and ethylene mediate insect-induced volatile emission inZea mays, Physiol. Plant, 2003, 117: 403–412.CrossRefGoogle Scholar
  51. 51.
    Li, G. H., Chen, Q. J., Pang, Y., Studies of artificial diets for the beet armyworm,Spodoptera exigue, Acta Sci. Nat. Univ. Sun Yat-set. (in Chinese), 1998, 37: 1–5.Google Scholar
  52. 52.
    Li, C. P., Larkins, B. A., Identification of a maize endosperm-specific cDNA encoding farnesyl pyrophosphate synthetase, Gene, 1996, 171: 193–196.CrossRefGoogle Scholar
  53. 53.
    Schnee, C., Kollner, T. G., Gershenzon, J. et al., The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-beta-farnesene, (E)-nerolidol, and (E,E)-farnesol after herbivore damage, Plant Physiol., 2002, 130: 2049–2060.CrossRefGoogle Scholar
  54. 54.
    Codero, M. J., Raventos, D., San Segundo, B., Expression of a maize proteinase inhibitor gene is induced in response to wounding and fungal infection—Systemic wound-response of a monocot gene, Plant J., 1994, 6: 141–150.CrossRefGoogle Scholar
  55. 55.
    Wu, S., Kriz, A. L., Widholm, J. M., Nucleotide sequence of a maize cDNAfor a class II, acidic beta-1,3-glucanase, Plant Physiol., 1994, 106: 1709–1710.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.Institute of Tropical and Subtropical EcologySouth China Agricultural UniversityGuangzhouChina

Personalised recommendations