Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evolutionary status ofEntamoeba


In addition to its medical importance as parasitic pathogen,Entamoeba has aroused people’s interest in its evolutionary status for a long time. Lacking mitochondrion and other intracellular organelles common to typical eukaryotes,Entamoeba and several other amitochondrial protozoans have been recognized as ancient premitochondriate eukaryotes and named “archezoa”, the most primitive extant eukaryotes. It was suggested that they might be living fossils that remained in a primitive stage of evolution before acquisition of organelles, lying close to the transition between prokaryotes and eukaryotes. However, recent studies revealed thatEntamoeba contained an organelle, “crypton” or “mitosome”, which was regarded as specialized or reductive mitochondrion. Relative molecular phylogenetic analyses also indicated the existence or the probable existence of mitochondrion inEntamoeba. Our phylogenetic analysis based on DNA topoisomerase II strongly suggested its divergence after some mitchondriate eukaryotes. Here, all these recent researches are reviewed and the evolutionary status ofEntamoeba is discussed.

This is a preview of subscription content, log in to check access.


  1. 1.

    Cavalier-Smith, T., A six-kingdom classification and a unified phylogeny, Endocytobiology II(eds. Schenk, H. E. A. and Schwemmler, W. S.), Berlin: Walter de Gruyter, 1983, 1027–1034.

  2. 2.

    Clark, C. G., Roger, A. J., Direct evidence for secondary loss of mitochondria inEntamoeba histolytica, Proc. Natl. Acad. Sci. USA, 1995, 92(14): 6518–6521.

  3. 3.

    Bakatselou, C., Kidgell, C., Graham-Clark, C., A mitochondrialtype hsp70 gene ofEntamoeba histolytica, Mol. Biochem. Parasitol., 2000, 110(1): 177–182.

  4. 4.

    Bakatselou, C., Beste, D., Kadri, A. O. et al., Analysis of genes of mitochondria origin in the genusEntamoeba, J. Eukaryot. Microbiol., 2003, 50(3): 210–214.

  5. 5.

    Arisue, N., Sanchez, L. B., Weiss, L. M. et al., Mitochondrial-type hsp70 genes of the amitochondriate protists,Giardia intestinalis, Entamoeba histolytica and two microsporidians, Parasital. Int., 2002, 51(1): 9–16.

  6. 6.

    Mai, Z., Ghosh, S., Frisardi, M. et al., Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasiteEntamoeba histolytica, Mol. Cell. Biol., 1999, 19(3): 2198–2205.

  7. 7.

    Tovar, J., Fischer, A., Clark, C. G., The mitosome, a novel organelle related to mitochondria in the amitochondrial parasiteEntamoeba histolytica, Mol. Microbiol., 1999, 32(5): 1013–1021.

  8. 8.

    Ghosh, S. K., Field, J., Rogers, R. et al., TheEntamoeba histolytica mitochondrion-derived organelle (crypton) contains double-stranded DNA and appears to be bound by a double membrane, Infect. Immun., 2000, 68(7): 4319–4322.

  9. 9.

    Mazzuco, A., Benchimol, M., De Souza, W., Endoplasmic reticulum and Golgi-like elements inEntamoeba, Micron, 1997, 28(3): 241–247.

  10. 10.

    Ghosh, S. K., Field, J., Frisardi, M. et al., Chitinase secretion by encystingEntamoeba invadens and transfectedEntamoeba histolytica trophozoites: localization of secretory vesicles, endoplasmic reticulum, and Golgi apparatus, Infect. Immun., 1999, 67(6): 3073–3081.

  11. 11.

    Chavez-Munguia, B., Espinosa-Cantellano, M., Castanon, G. et al., Ultrastructural evidence of smooth endoplasmic reticulum and golgi-like elements inEntamoeba histolytica andEntamoeba dispar, Arch. Med. Res., 2000, 31(4 Suppl): S165-S167.

  12. 12.

    Sogin, M. L., Early evolution and the origin of eukaryotes, Curr. Opin. Genet. Dev, 1991, 1(4): 457–463.

  13. 13.

    Hasegawa, M., Hashimoto, T., Adachi, J. et al., Early branchings in the evolution of eukaryotes: Ancient divergence of Entamoeba that lacks mitochondria revealed by protein sequence data, J. Mol. Evol., 1993, 36(4): 380–388.

  14. 14.

    Shirakura, T., Hashimoto, T., Nakamura, Y. et al., Phylogenetic place of a mitochondria-lacking protozoan, Entamoeba histolytica, inferred from amino acid sequences of elongation factor 2′, Jpn. J. Genet., 1994, 69(2): 119–135.

  15. 15.

    Edlind, T. D., Li, J., Visvesvara, G. S. et al., Phylogenetic analysis of beta-tubulin sequences from amitochondrial protozoa, Mol. Phy-logeny. Evol., 1996, 5(2): 359–367.

  16. 16.

    Philippe, H., Germot, A., Phylogeny of eukaryotes based on ribo-somal RNA: Long-branch attraction and models of sequence evo-lution, Mol. Biol. Evol., 2000, 17(5): 830–834.

  17. 17.

    Philippe, H., Opinion: Long branch attraction and protist phylogeny, Protist, 2000, 151(4): 307–316.

  18. 18.

    Rosenthal, B., Mai, Z., Caplivski, D. et al., Evidence for the bacte-rial origin of genes encoding fermentation enzymes of the amito-chondriate protozoan parasite Entamoeba histolytica, J. Bacteriol., 1997, 179(11): 3736–3745.

  19. 19.

    Field, J., Rosenthal, B., Samuelson, J., Early lateral transfer of genes encoding malic enzyme, acetyl-CoA synthetase and alcohol dehydrogenases from anaerobic prokaryotes to Entamoeba histo-lytica, Mol. Microbiol., 2000, 38(3): 446–455.

  20. 20.

    Nixon, J. E., Wang, A., Field, J. et al., Evidence for lateral transfer of genes encoding ferredoxins, nitroreductases, NADH oxidase, and alcohol dehydrogenase 3 from anaerobic prokaryotes to Giardia lamblia and Entamoeba histolytica, Eukaryot. Cell, 2002, 1(2): 181–190.

  21. 21.

    Nixon, J. E., Field, J., McArthur, A. G. et al., Iron-dependent hy-drogenases of Entamoeba histolytica and Giardia lamblia: Activity of the recombinant entamoebic enzyme and evidence for lateral gene transfer, Biol. Bull., 2003, 204(1): 1–9.

  22. 22.

    Cavalier-Smith, T., A revised six-kingdom system of life, Biol. Rev., 1998, 73: 203–266.

  23. 23.

    Bapteste, E., Brinkmann, H., Lee, J. A. et al., The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba, Proc. Natl. Acad. Sci. USA, 2002, 99(3): 1414–1419.

  24. 24.

    Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. et al., A kingdom-level phylogeny of eukaryotes based on combined protein data, Science, 2002, 290: 972–977.

  25. 25.

    Stechmann, A., Cavalier-Smith, T., Rooting the eukaryote tree by using a derived gene fusion, Science, 2002, 297(5578): 89–91.

Download references

Author information

Correspondence to Jianfan Wen.

About this article

Cite this article

Dong, J., Wen, J., Xin, D. et al. Evolutionary status ofEntamoeba . Chin.Sci.Bull. 49, 1847–1853 (2004).

Download citation


  • Entamoeba
  • mitochondrion
  • mitosome
  • molecular phylogenetic analyses
  • evolutionary status